基本信息
源码名称:MATLAB图形分割
源码大小:1.14M
文件格式:.zip
开发语言:MATLAB
更新时间:2024-08-15
   友情提示:(无需注册或充值,赞助后即可获取资源下载链接)

     嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300

本次赞助数额为: 2 元 
   源码介绍
基于MATLAB的二维和三维图形分割工具

% add all needed function paths
addpath .\coherenceFilter
addpath .\GLtree3DMex
% %% Compile
% fprintf('COMPILING:\n')
% mex GraphSeg_mex.cpp
% fprintf('\tGraphSeg_mex.cpp: mex succesfully completed.\n') 

% mex .\GLtree3DMex\BuildGLTree.cpp
% fprintf('\tBuildGLTree : mex succesfully completed.\n') 

% mex .\GLtree3DMex\KNNSearch.cpp
% fprintf('\tKNNSearch : mex succesfully completed.\n') 

% mex .\GLtree3DMex\DeleteGLTree.cpp
% fprintf('\tDeleteGLTree : mex succesfully completed.\n\n') 
% %end of Complie#
% %load an gray image:
%load clown;
%I_gray = X;
[filename,pathname]=uigetfile({'*.bmp'},'choose the picture');
str=[pathname, filename];
I_gray =imread(str);
I_gray=rgb2gray(I_gray);
%smooth the image by coherence filter:
filted_I = CoherenceFilter(I_gray,struct('T',5,'rho',2,'Scheme','I', 'sigma', 1));
%adjacent neighborhood  model:
L = graphSeg(filted_I, 0.5, 50, 2, 0);
%k-nearest neighborhood model:
Lnn = graphSeg(filted_I, 0.5/sqrt(3), 50, 10, 1);
%display:
subplot(3, 1, 1), imshow(I_gray, []), title('original image');
subplot(3, 1, 2), imshow(label2rgb(L)), title('adjacent neighborhood based segmentation');
subplot(3, 1, 3), imshow(label2rgb(Lnn)), title('k nearest neighborhood based segmentation');



【文件目录】

GraphSeg

├── BuildGLTree.mexw64
├── DeleteGLTree.mexw64
├── GLtree3DMex
│   ├── BuildGLTree.cpp
│   ├── BuildGLTree.m
│   ├── DeleteGLTree.cpp
│   ├── DeleteGLTree.m
│   ├── GLTree.cpp
│   ├── GLTree.h
│   ├── KNNSearch.cpp
│   ├── KNNSearch.m
│   └── TestMexFiles.m
├── GraphSeg.h
├── GraphSeg_mex.cpp
├── GraphSeg_mex.mexw64
├── KNNSearch.mexw64
├── binaryHeap.h
├── coherenceFilter
│   ├── CoherenceFilter.m
│   ├── compile_c_files.m
│   ├── functions
│   │   ├── derivatives.c
│   │   ├── derivatives.m
│   │   ├── imgaussian.c
│   │   ├── imgaussian.m
│   │   ├── showcs3.fig
│   │   └── showcs3.m
│   ├── functions2D
│   │   ├── CoherenceFilterStep2D.c
│   │   ├── CoherenceFilterStep2D.m
│   │   ├── CoherenceFilterStep2D_functions.c
│   │   ├── ConstructDiffusionTensor2D.m
│   │   ├── EigenVectors2D.m
│   │   ├── StructureTensor2D.m
│   │   ├── diffusion_scheme_2D_implicit.m
│   │   ├── diffusion_scheme_2D_non_negativity.m
│   │   ├── diffusion_scheme_2D_rotation_invariant.m
│   │   └── diffusion_scheme_2D_standard.m
│   ├── functions3D
│   │   ├── CoherenceFilterStep3D.c
│   │   ├── CoherenceFilterStep3D.m
│   │   ├── CoherenceFilterStep3D_functions.c
│   │   ├── EigenDecomposition3.c
│   │   ├── EigenDecomposition3.h
│   │   ├── EigenVectors3D.c
│   │   ├── EigenVectors3D.m
│   │   ├── StructureTensor2DiffusionTensor3DWeickert.c
│   │   ├── StructureTensor2DiffusionTensor3DWeickert.m
│   │   ├── StructureTensor3D.m
│   │   ├── diffusion_scheme_3D_implicit.m
│   │   ├── diffusion_scheme_3D_non_negativity.c
│   │   ├── diffusion_scheme_3D_non_negativity.m
│   │   ├── diffusion_scheme_3D_rotation_invariant.c
│   │   ├── diffusion_scheme_3D_rotation_invariant.m
│   │   ├── diffusion_scheme_3D_standard.c
│   │   └── diffusion_scheme_3D_standard.m
│   └── images
│       ├── Thumbs.db
│       ├── sphere.mat
│       ├── sync.png
│       └── sync_noise.png
├── graphSeg.m
├── knng_search.m
├── license.txt
└── test_GraphSeg.m

6 directories, 59 files