嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元微信扫码支付:2 元
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
计算光学
Contents
Preface page xi
1 Introduction 1
1.1 What is photonics? 1
1.2 What is computational photonics? 2
1.3 Optical fibre communication 5
1.4 Biological and medical photonics 12
1.5 Photonic sensors 12
1.6 Silicon photonics 13
1.7 Photonic quantum information science 14
References 14
2 Basicfactsaboutoptics 17
2.1 Geometrical optics 17
2.2 Wave optics 21
2.3 Problems 30
Appendix 2A: MATLAB listings 31
References 34
3 Basicfactsfromelectromagnetism 35
3.1 Maxwell’s equations 35
3.2 Boundary conditions 36
3.3 Wave equation 38
3.4 Time-harmonic fields 39
3.5 Polarized waves 42
3.6 Fresnel coefficients and phases 44
3.7 Polarization by reflection from dielectric surfaces 48
3.8 Antireflection coating 50
3.9 Bragg mirrors 53
3.10 Goos-Hänchen shift 58
3.11 Poynting theorem 59
3.12 Problems 60
3.13 Project 60
Appendix 3A: MATLAB listings 61
References 63
v
vi Contents
4 Slabwaveguides 64
4.1 Ray optics of the slab waveguide 64
4.2 Fundamentals of EM theory of dielectric waveguides 69
4.3 Wave equation for a planar wide waveguide 71
4.4 Three-layer symmetrical guiding structure (TE modes) 72
4.5 Modes of the arbitrary three-layer asymmetric planar waveguide in 1D 75
4.6 Multilayer slab waveguides: 1D approach 79
4.7 Examples: 1D approach 85
4.8 Two-dimensional (2D) structures 88
4.9 Problems 92
4.10 Projects 92
Appendix 4A: MATLAB listings 93
References 104
5 Linearopticalfibreandsignaldegradation 106
5.1 Geometrical-optics description 106
5.2 Fibre modes in cylindrical coordinates 110
5.3 Dispersion 123
5.4 Pulse dispersion during propagation 127
5.5 Problems 128
5.6 Projects 129
Appendix 5A: Some properties of Bessel functions 129
Appendix 5B: Characteristic determinant 130
Appendix 5C: MATLAB listings 131
References 137
6 Propagationoflinearpulses 138
6.1 Basic pulses 138
6.2 Modulation of a semiconductor laser 143
6.3 Simple derivation of the pulse propagation equation in the presence of
dispersion 146
6.4 Mathematical theory of linear pulses 148
6.5 Propagation of pulses 152
6.6 Problems 155
Appendix 6A: MATLAB listings 156
References 165
7 Opticalsources 167
7.1 Overview of lasers 167
7.2 Semiconductor lasers 172
7.3 Rate equations 181
7.4 Analysis based on rate equations 187
7.5 Problems 196
7.6 Project 196
vii Contents
Appendix 7A: MATLAB listings 196
References 202
8 OpticalamplifiersandEDFA 204
8.1 General properties 205
8.2 Erbium-doped fibre amplifiers (EDFA) 209
8.3 Gain characteristics of erbium-doped fibre amplifiers 213
8.4 Problems 215
8.5 Projects 215
Appendix 8A: MATLAB listings 215
References 222
9 Semiconductoropticalamplifiers(SOA) 223
9.1 General discussion 223
9.2 SOA rate equations for pulse propagation 228
9.3 Design of SOA 231
9.4 Some applications of SOA 233
9.5 Problem 236
9.6 Project 236
Appendix 9A: MATLAB listings 236
References 238
10 Opticalreceivers 240
10.1 Main characteristics 241
10.2 Photodetectors 242
10.3 Receiver analysis 251
10.4 Modelling of a photoelectric receiver 257
10.5 Problems 258
10.6 Projects 258
Appendix 10A: MATLAB listings 258
References 260
11 Finitedifferencetimedomain(FDTD)formulation 262
11.1 General formulation 262
11.2 One-dimensional Yee implementation without dispersion 266
11.3 Boundary conditions in 1D 272
11.4 Two-dimensional Yee implementation without dispersion 275
11.5 Absorbing boundary conditions (ABC) in 2D 277
11.6 Dispersion 280
11.7 Problems 280
11.8 Projects 281
Appendix 11A: MATLAB listings 281
References 286
viii Contents
12 Beampropagationmethod(BPM) 288
12.1 Paraxial formulation 288
12.2 General theory 292
12.3 The 1 1 dimensional FD-BPM formulation 299
12.4 Concluding remarks 306
12.5 Problems 307
12.6 Project 308
Appendix 12A: Details of derivation of the FD-BPM equation 308
Appendix 12B: MATLAB listings 310
References 314
13 Somewavelengthdivisionmultiplexing(WDM)devices 316
13.1 Basics of WDM systems 316
13.2 Basic WDM technologies 317
13.3 Applications of BPM to photonic devices 323
13.4 Projects 325
Appendix 13A: MATLAB listings 325
References 329
14 Opticallink 331
14.1 Optical communication system 331
14.2 Design of optical link 333
14.3 Measures of link performance 336
14.4 Optical fibre as a linear system 338
14.5 Model of optical link based on filter functions 340
14.6 Problems 344
14.7 Projects 344
Appendix 14A: MATLAB listings 345
References 348
15 Opticalsolitons 351
15.1 Nonlinear optical susceptibility 351
15.2 Main nonlinear effects 352
15.3 Derivation of the nonlinear Schrödinger equation 353
15.4 Split-step Fourier method 357
15.5 Numerical results 361
15.6 A few comments about soliton-based communications 364
15.7 Problems 364
Appendix 15A: MATLAB listings 365
References 366
16 Solarcells 368
16.1 Introduction 368
16.2 Principles of photovoltaics 370
ix Contents
16.3 Equivalent circuit of solar cells 373
16.4 Multijunctions 376
Appendix 16A: MATLAB listings 379
References 381
17 Metamaterials 384
17.1 Introduction 384
17.2 Veselago approach 388
17.3 How to create metamaterial? 389
17.4 Some applications of metamaterials 395
17.5 Metamaterials with an active element 400
17.6 Annotated bibliography 401
Appendix 17A: MATLAB listings 401
References 403
Appendix A BasicMATLAB 406
A.1 Working session with m-files 407
A.2 Basic rules 409
A.3 Some rules about good programming in MATLAB 410
A.4 Basic graphics 412
A.5 Basic input-output 416
A.6 Numerical differentiation 417
A.7 Review questions 418
References 418
Appendix B Summaryofbasicnumericalmethods 420
B.1 One-variable Newton’s method 420
B.2 Muller’s method 422
B.3 Numerical differentiation 425
B.4 Runge-Kutta (RK) methods 432
B.5 Solving differential equations 433
B.6 Numerical integration 435
B.7 Symbolic integration in MATLAB 438
B.8 Fourier series 438
B.9 Fourier transform 441
B.10 FFT in MATLAB 443
B.11 Problems 446
References 446
Index 448