基本信息
源码名称:基于模拟退火的粒子群优化算法
源码大小:2.18KB
文件格式:.m
开发语言:MATLAB
更新时间:2021-07-01
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
模拟退火算法具有很好的跳跃能力,能够有效的避免陷入局部最优
for t = 1:M
groupFit = fitness(pg);
%w = wmax-(wmax-wmin)*sin(((t/M)^2)*2/pi); % 非线性惯性权重
%c1 = 1.5 cos((t/M)^2*pi);
%c2 = 1.5-cos((t/M)^2*pi); %异步学习因子
for i = 1:N %当前温度下各个Pi的温度值
Tfit(i) = exp( - (p(i) - groupFit)/T);
end
SumTfit = sum(Tfit);
Tfit = Tfit/SumTfit;
pBet = rand();
for i = 1:N %用轮盘赌策略确定全局最优的某个替代值
ComFit(i) = sum(Tfit(1:i));
if pBet <=ComFit(i)
pg_plus = x(i,:);
break;
end
end
C = c1 c2;
ksi = 2/abs( 2 - C -sqrt(C^2 - 4*C)); %速度压缩因子
for i = 1:N
%v(i,:) = ksi*w*(v(i,:) c1*rand*(y(i,:) - x(i,:)) c2*rand*(pg_plus - x(i,:))); %带惯性权重
v(i,:) = ksi*(v(i,:) c1*rand*(y(i,:) - x(i,:)) c2*rand*(pg_plus - x(i,:)));
x(i,:) = x(i,:) v(i,:);
% 边界位置处理
for z=1:D
for j=1:N
if x(j,z)>limit(z,2)
x(j,z)=limit(z,2);
end
if x(j,z) < limit(z,1)
x(j,z)=limit(z,1);
end
end
end
if fitness(x(i,:)) < p(i)
p(i) = fitness(x(i,:));
y(i,:) = x(i,:);
end
if p(i) < fitness(x(i,:))
pg = y(i,:);
end
end
T = T*lamda; % 退温操作
yy(t) = fitness(pg);
end
模拟退火算法具有很好的跳跃能力,能够有效的避免陷入局部最优
for t = 1:M
groupFit = fitness(pg);
%w = wmax-(wmax-wmin)*sin(((t/M)^2)*2/pi); % 非线性惯性权重
%c1 = 1.5 cos((t/M)^2*pi);
%c2 = 1.5-cos((t/M)^2*pi); %异步学习因子
for i = 1:N %当前温度下各个Pi的温度值
Tfit(i) = exp( - (p(i) - groupFit)/T);
end
SumTfit = sum(Tfit);
Tfit = Tfit/SumTfit;
pBet = rand();
for i = 1:N %用轮盘赌策略确定全局最优的某个替代值
ComFit(i) = sum(Tfit(1:i));
if pBet <=ComFit(i)
pg_plus = x(i,:);
break;
end
end
C = c1 c2;
ksi = 2/abs( 2 - C -sqrt(C^2 - 4*C)); %速度压缩因子
for i = 1:N
%v(i,:) = ksi*w*(v(i,:) c1*rand*(y(i,:) - x(i,:)) c2*rand*(pg_plus - x(i,:))); %带惯性权重
v(i,:) = ksi*(v(i,:) c1*rand*(y(i,:) - x(i,:)) c2*rand*(pg_plus - x(i,:)));
x(i,:) = x(i,:) v(i,:);
% 边界位置处理
for z=1:D
for j=1:N
if x(j,z)>limit(z,2)
x(j,z)=limit(z,2);
end
if x(j,z) < limit(z,1)
x(j,z)=limit(z,1);
end
end
end
if fitness(x(i,:)) < p(i)
p(i) = fitness(x(i,:));
y(i,:) = x(i,:);
end
if p(i) < fitness(x(i,:))
pg = y(i,:);
end
end
T = T*lamda; % 退温操作
yy(t) = fitness(pg);
end