基本信息
源码名称:数值分析matlab.pdf
源码大小:3.13M
文件格式:.pdf
开发语言:MATLAB
更新时间:2021-04-07
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
Numerical analysis using MATLAB and Excel by Steven T. Karris
Numerical analysis using MATLAB and Excel by Steven T. Karris
Table of Contents 1 Introduction to MATLAB 1−1 1.1 Command Window.................................................................................................1−1 1.2 Roots of Polynomials...............................................................................................1−3 1.3 Polynomial Construction from Known Roots ........................................................1−4 1.4 Evaluation of a Polynomial at Specified Values .....................................................1−5 1.5 Rational Polynomials ..............................................................................................1−8 1.6 Using MATLAB to Make Plots..............................................................................1−9 1.7 Subplots.................................................................................................................1−18 1.8 Multiplication, Division and Exponentiation.......................................................1−19 1.9 Script and Function Files......................................................................................1−26 1.10 Display Formats ....................................................................................................1−31 1.11 Summary ...............................................................................................................1−33 1.12 Exercises................................................................................................................1−37 1.13 Solutions to End−of−Chapter Exercises ...............................................................1−38 MATLAB Computations: Entire chapter 2 Root Approximations 2−1 2.1 Newton’s Method for Root Approximation...........................................................2−1 2.2 Approximations with Spreadsheets........................................................................2−7 2.3 The Bisection Method for Root Approximation .................................................2−19 2.4 Summary...............................................................................................................2−27 2.5 Exercises ...............................................................................................................2−28 2.6 Solutions to End−of−Chapter Exercises...............................................................2−29 MATLAB Computations: Pages 2−2 through 2−7, 2−14, 2−21 through 2−23, 2−29 through 2−34 Excel Computations: Pages 2−8 through 2−19, 2−24 through 2−26 3 Sinusoids and Phasors 3−1 3.1 Alternating Voltages and Currents ........................................................................3−1 3.2 Characteristics of Sinusoids....................................................................................3−2 3.3 Inverse Trigonometric Functions .........................................................................3−10 3.4 Phasors..................................................................................................................3−10 3.5 Addition and Subtraction of Phasors ...................................................................3−11 3.6 Multiplication of Phasors......................................................................................3−12 3.7 Division of Phasors ...............................................................................................3−13 ii Numerical Analysis Using MATLAB® and Excel®, Third Edition Copyright © Orchard Publications 3.8 Exponential and Polar Forms of Phasors ..............................................................3−13 3.9 Summary ...............................................................................................................3−24 3.10 Exercises................................................................................................................3−27 3.11 Solutions to End−of−Chapter Exercises................................................................3−28 MATLAB Computations: Pages 3−15 through 3−23, 3−28 through 3−31 Simulink Modeling: Pages 3−16 through 3−23 4 Matrices and Determinants 4−1 4.1 Matrix Definition.....................................................................................................4−1 4.2 Matrix Operations ...................................................................................................4−2 4.3 Special Forms of Matrices........................................................................................4−5 4.4 Determinants...........................................................................................................4−9 4.5 Minors and Cofactors ............................................................................................4−13 4.6 Cramer’s Rule ........................................................................................................4−18 4.7 Gaussian Elimination Method...............................................................................4−20 4.8 The Adjoint of a Matrix ........................................................................................4−22 4.9 Singular and Non−Singular Matrices ....................................................................4−22 4.10 The Inverse of a Matrix.........................................................................................4−23 4.11 Solution of Simultaneous Equations with Matrices ..............................................4−25 4.12 Summary................................................................................................................4−32 4.13 Exercises ................................................................................................................4−36 4.14 Solutions to End−of−Chapter Exercises ................................................................4−38 MATLAB Computations: Pages 4−3, 4−5 through 4−8, 4−10, 4−12, 4−3, 4−5, 4−19 through 4−20, 4−24, 4−26, 4−28, 4−30, 4−38, 4−41, 4−43 Excel Computations: Pages 4−28 through 4−29, 4−42 through 4−43 5 Differential Equations, State Variables, and State Equations 5−1 5.1 Simple Differential Equations..................................................................................5−1 5.2 Classification............................................................................................................5−2 5.3 Solutions of Ordinary Differential Equations (ODE) .............................................5−6 5.4 Solution of the Homogeneous ODE ...................................................................... 5−8 5.5 Using the Method of Undetermined Coefficients for the Forced Response........ 5−10 5.6 Using the Method of Variation of Parameters for the Forced Response ............. 5−20 5.7 Expressing Differential Equations in State Equation Form.................................. 5−24 5.8 Solution of Single State Equations....................................................................... 5−27 5.9 The State Transition Matrix ................................................................................ 5−28 5.10 Computation of the State Transition Matrix...................................................... 5−30 5.11 Eigenvectors.......................................................................................................... 5−38 5.12 Summary.............................................................................................................. 5−42 Numerical Analysis Using MATLAB® and Excel®, Third Edition iii Copyright © Orchard Publications 5.13 Exercises ............................................................................................................... 5−47 5.14 Solutions to End−of−Chapter Exercises............................................................... 5−49 MATLAB Computations: Pages 5−11, 5−13 through 5−14, 5−16 through 5−17, 5−19, 5−23, 5−33 through 5−35, 5−37, 5−49 through 5−53, 5−55 6 Fourier, Taylor, and Maclaurin Series 6−1 6.1 Wave Analysis ........................................................................................................6−1 6.2 Evaluation of the Coefficients ...............................................................................6−2 6.3 Symmetry ...............................................................................................................6−7 6.4 Waveforms in Trigonometric Form of Fourier Series .........................................6−12 6.5 Alternate Forms of the Trigonometric Fourier Series .........................................6−25 6.6 The Exponential Form of the Fourier Series .......................................................6−29 6.7 Line Spectra .........................................................................................................6−33 6.8 Numerical Evaluation of Fourier Coefficients .....................................................6−36 6.9 Power Series Expansion of Functions ..................................................................6−40 6.10 Taylor and Maclaurin Series ................................................................................6−41 6.11 Summary ..............................................................................................................6−48 6.12 Exercises ..............................................................................................................6−51 6.13 Solutions to End−of−Chapter Exercises ..............................................................6−53 MATLAB Computations: Pages 6−35, 6−45, 6−58 through 6−61 Excel Computations: Pages 6−37 through 6−39 7 Finite Differences and Interpolation 7−1 7.1 Divided Differences ...............................................................................................7−1 7.2 Factorial Polynomials .............................................................................................7−6 7.3 Antidifferences ...................................................................................................7−12 7.4 Newton’s Divided Difference Interpolation Method .........................................7−15 7.5 Lagrange’s Interpolation Method ........................................................................7−17 7.6 Gregory−Newton Forward Interpolation Method ..............................................7−19 7.7 Gregory−Newton Backward Interpolation Method ...........................................7−21 7.8 Interpolation with MATLAB .............................................................................7−24 7.9 Summary .............................................................................................................7−39 7.10 Exercises .............................................................................................................7−44 7.11 Solutions to End−of−Chapter Exercises .............................................................7−45 MATLAB Computations: Pages 7−8 through 7−9, 7−13 through 7−15, 7−26 through 7−38, 7−45 through 7−46, 7−48, 7−50, 7−52 Excel Computations: Pages 7−17 through 7−19, 7−22 through 7−25, 7−49, 7−52 iv Numerical Analysis Using MATLAB® and Excel®, Third Edition Copyright © Orchard Publications 8 Linear and Parabolic Regression 8−1 8.1 Curve Fitting ..........................................................................................................8−1 8.2 Linear Regression ...................................................................................................8−2 8.3 Parabolic Regression ..............................................................................................8−7 8.4 Regression with Power Series Approximations ....................................................8−14 8.5 Summary ..............................................................................................................8−24 8.6 Exercises ...............................................................................................................8−26 8.7 Solutions to End−of−Chapter Exercises ...............................................................8−28 MATLAB Computations: Pages 8−11 through 8−14, 8−17 through 8−23, 8−30 through 8−34 Excel Computations: Pages 8−5 through 8−10, 8−15 through 8−19, 8−28 through 8−32 9 Solution of Differential Equations by Numerical Methods 9−1 9.1 Taylor Series Method ............................................................................................ 9−1 9.2 Runge−Kutta Method ............................................................................................ 9−5 9.3 Adams’ Method ................................................................................................... 9−13 9.4 Milne’s Method .................................................................................................... 9−15 9.5 Summary .............................................................................................................. 9−17 9.6 Exercises .............................................................................................................. 9−20 9.7 Solutions to End−of−Chapter Exercises .............................................................. 9−21 MATLAB Computations: Pages 9−5, 9−9 through 9−12, 9−21 through 9−23 Excel Computations: Page 9−2, 9−14, 9−22 through 9−26 10 Integration by Numerical Methods 10−1 10.1 The Trapezoidal Rule .......................................................................................... 10−1 10.2 Simpson’s Rule ..................................................................................................... 10−6 10.3 Summary ............................................................................................................ 10−14 10.4 Exercises ............................................................................................................ 10−15 10.5 Solution to End−of−Chapter Exercises .............................................................. 10−16 MATLAB Computations: Pages 10−3 through 10−6, 10−9 through 10−13, 10−16, 10−18 through 10−21 Excel Computations: Pages 10−10, 10−19 through 10−21 11 Difference Equations 11−1 11.1 Introduction ......................................................................................................... 11−1 11.2 Definition, Solutions, and Applications .............................................................. 11−1 11.3 Fibonacci Numbers .............................................................................................. 11−7 Numerical Analysis Using MATLAB® and Excel®, Third Edition v Copyright © Orchard Publications 11.4 Summary .............................................................................................................11−11 11.5 Exercises ............................................................................................................. 11−13 11.6 Solutions to End−of−Chapter Exercises .............................................................11−14 12 Partial Fraction Expansion 12−1 12.1 Partial Fraction Expansion ..................................................................................12−1 12.2 Alternate Method of Partial Fraction Expansion ..............................................12−13 12.3 Summary ............................................................................................................12−19 12.4 Exercises ............................................................................................................12−22 12.5 Solutions to End−of−Chapter Exercises ............................................................12−23 MATLAB Computations: Pages 12−3 through 12−5, 12−9 through 12−12, 12−16 through 12-18, 12−23 through 12−28 13 The Gamma and Beta Functions and Distributions 13−1 13.1 The Gamma Function .........................................................................................13−1 13.2 The Gamma Distribution ..................................................................................13−16 13.3 The Beta Function .............................................................................................13−17 13.4 The Beta Distribution ........................................................................................13−20 13.5 Summary ............................................................................................................13−22 13.6 Exercises ............................................................................................................13−24 13.7 Solutions to End−of−Chapter Exercises ............................................................13−25 MATLAB Computations: Pages 13−3, 13−5, 13−10, 13−19, 13−25 Excel Computations: Pages 13−5, 13−10, 13−16 through 13−17, 13−19, 13−21 14 Orthogonal Functions and Matrix Factorizations 14−1 14.1 Orthogonal Functions ......................................................................................14−1 14.2 Orthogonal Trajectories ...................................................................................14−2 14.3 Orthogonal Vectors ..........................................................................................14−4 14.4 The Gram−Schmidt Orthogonalization Procedure ..........................................14−7 14.5 The LU Factorization .......................................................................................14−9 14.6 The Cholesky Factorization ............................................................................14−23 14.7 The QR Factorization .....................................................................................14−25 14.8 Singular Value Decomposition .......................................................................14−28 14.9 Summary .........................................................................................................14−30 14.10 Exercises .........................................................................................................14−32 14.11 Solutions to End−of−Chapter Exercises .........................................................14−34 MATLAB Computations: Pages 14−8 through 14−9, 14−11 through 14−29, 14−36, 14−38 through 14−39 vi Numerical Analysis Using MATLAB® and Excel®, Third Edition Copyright © Orchard Publications 15 Bessel, Legendre, and Chebyshev Functions 15−1 15.1 The Bessel Function ............................................................................................15−1 15.2 Legendre Functions ...........................................................................................15−10 15.3 Laguerre Polynomials .........................................................................................15−21 15.4 Chebyshev Polynomials .....................................................................................15−22 15.5 Summary ............................................................................................................15−27 15.6 Exercises .............................................................................................................15−32 15.7 Solutions to End−of−Chapter Exercises ............................................................15−33 MATLAB Computations: Pages 15−3 through 15−4, 15−6, 15−9, 14−19 through 15−22, 15−25, 15−33, 15−35 through 15−37 Excel Computations: Pages 15−5, 15−9 16 Optimization Methods 16−1 16.1 Linear Programming ........................................................................................... 16−1 16.2 Dynamic Programming ........................................................................................16−4 16.3 Network Analysis ...............................................................................................16−14 16.4 Summary ............................................................................................................16−19 16.5 Exercises .............................................................................................................15−20 16.6 Solutions to End−of−Chapter Exercises ............................................................15−22 MATLAB Computations: Pages 16−3 Excel Computations: Pages 16−4, 16−23, 16−25 through 16−27 A Difference Equations in Discrete−Time Systems A−1 A.1 Recursive Method for Solving Difference Equations........................................... A−1 A.2 Method of Undetermined Coefficients ................................................................A−1 MATLAB Computations: Pages A−4, A−7, A−9 B Introduction to Simulink® B−1 B.1 Simulink and its Relation to MATLAB ...............................................................B−1 B.2 Simulink Demos ..................................................................................................B−20 MATLAB Computations and Simulink Modeling: Entire Appendix B C Ill-Conditioned Matrices C−1 C.1 The Norm of a Matrix ...........................................................................................C−1 C.2 Condition Number of a Matrix .............................................................................C−2 C.3 Hilbert Matrices ....................................................................................................C−3 Numerical Analysis Using MATLAB® and Excel®, Third Edition vii Copyright © Orchard Publications MATLAB Computations: Pages C−1, C−4 through C−5 References R−1 Index IN−1