基本信息
源码名称:神经网络(net.mat)
源码大小:0.28M
文件格式:.mat
开发语言:MATLAB
更新时间:2020-12-26
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
clc;clear;close all
load("C:\Users\admin\Desktop\to_student\Train_data\data_train.mat");
L=length(data_train);
data_train(1).length=[];
data_train(2).label2=[];
for k=1:L
signal=data_train(k).sequence;
%对信号进行方差归一化,所有信号的方差都是1,消除信号在幅值上的差异
signal=signal/std(signal);
% 设计带通滤波器去除极限漂移和高频噪声
fc=[0.5 40];
[b,a]=butter(3,2*fc/data_train(k,1).fs);
fsignal=filter(b,a,signal);
data_train(k,1).sequence=fsignal;
data_train(k).length=length(data_train(k,1).sequence);
if strcmp(data_train(k,1).label,'ECG')==1
data_train(k).label2=1;
elseif strcmp(data_train(k,1).label,'PPG')==1
data_train(k).label2=2;
elseif strcmp(data_train(k,1).label,'EEG')==1
data_train(k).label2=3;
end
end
[xh,I]=sort([data_train.length]);
signal=data_train(I);
XTrain=cell(2474,1);%包含预测变量
YTrain=zeros(1,2474);%包含分类标签或数字响应
for k=1:2474
XTrain{k,1}=(data_train(k).sequence(1:5000))';
YTrain(k)=data_train(k).label2;
end
YTrain=YTrain';
YTrain=categorical(YTrain);
inputSize = 1;
numHiddenUnits = 100;
numClasses = 3;%指定3个类
layers = [ ...
sequenceInputLayer(inputSize)
bilstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]
maxEpochs = 100;%最大纪元数
miniBatchSize = 10;%小批量大小
options = trainingOptions('adam', ...
'ExecutionEnvironment','auto', ...
'GradientThreshold',1, ...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'SequenceLength','longest', ...
'Shuffle','never', ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,layers,options);
save('net.mat','net');
clc;clear;close all
load("C:\Users\admin\Desktop\to_student\Train_data\data_train.mat");
L=length(data_train);
data_train(1).length=[];
data_train(2).label2=[];
for k=1:L
signal=data_train(k).sequence;
%对信号进行方差归一化,所有信号的方差都是1,消除信号在幅值上的差异
signal=signal/std(signal);
% 设计带通滤波器去除极限漂移和高频噪声
fc=[0.5 40];
[b,a]=butter(3,2*fc/data_train(k,1).fs);
fsignal=filter(b,a,signal);
data_train(k,1).sequence=fsignal;
data_train(k).length=length(data_train(k,1).sequence);
if strcmp(data_train(k,1).label,'ECG')==1
data_train(k).label2=1;
elseif strcmp(data_train(k,1).label,'PPG')==1
data_train(k).label2=2;
elseif strcmp(data_train(k,1).label,'EEG')==1
data_train(k).label2=3;
end
end
[xh,I]=sort([data_train.length]);
signal=data_train(I);
XTrain=cell(2474,1);%包含预测变量
YTrain=zeros(1,2474);%包含分类标签或数字响应
for k=1:2474
XTrain{k,1}=(data_train(k).sequence(1:5000))';
YTrain(k)=data_train(k).label2;
end
YTrain=YTrain';
YTrain=categorical(YTrain);
inputSize = 1;
numHiddenUnits = 100;
numClasses = 3;%指定3个类
layers = [ ...
sequenceInputLayer(inputSize)
bilstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]
maxEpochs = 100;%最大纪元数
miniBatchSize = 10;%小批量大小
options = trainingOptions('adam', ...
'ExecutionEnvironment','auto', ...
'GradientThreshold',1, ...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'SequenceLength','longest', ...
'Shuffle','never', ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,layers,options);
save('net.mat','net');