基本信息
源码名称:神经网络 matlab代码
源码大小:1.42KB
文件格式:.m
开发语言:MATLAB
更新时间:2020-11-23
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
%% I. 清空环境变量 clear all clc %% II. 训练集/测试集产生 %% % % 1. 导入数据 % importdata('新建文本文档.txt') load wdsy.mat %% % 2. 随机产生训练集和测试集 temp = randperm(size(NIR,1)); % 训练集——50个样本 P_train = NIR(temp(1:50),:)'; T_train = octane(temp(1:50),:)'; % 测试集——10个样本 P_test = NIR(temp(51:end),:)'; T_test = octane(temp(51:end),:)'; N = size(P_test,2); %% III. 数据归一化 [p_train, ps_input] = mapminmax(P_train,0,1); p_test = mapminmax('apply',P_test,ps_input); [t_train, ps_output] = mapminmax(T_train,0,1); %% IV. BP神经网络创建、训练及仿真测试 %% % 1. 创建网络 net = newff(p_train,t_train,9); %% % 2. 设置训练参数 net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; net.trainParam.lr = 0.01; %% % 3. 训练网络 net = train(net,p_train,t_train); %% % 4. 仿真测试 t_sim = sim(net,p_test); %% % 5. 数据反归一化 T_sim = mapminmax('reverse',t_sim,ps_output); %% V. 性能评价 %% % 1. 相对误差error error = abs(T_sim - T_test)./T_test; %% % 2. 决定系数R^2 R2 = (N * sum(T_sim .* T_test) - sum(T_sim) * sum(T_test))^2 / ((N * sum((T_sim).^2) - (sum(T_sim))^2) * (N * sum((T_test).^2) - (sum(T_test))^2)); %% % 3. 结果对比 result = [T_test' T_sim' error'] %% VI. 绘图 figure plot(1:N,T_test,'b:*',1:N,T_sim,'r-o') legend('真实值','预测值') xlabel('预测样本') ylabel('辛烷值') string = {'测试集辛烷值含量预测结果对比';['R^2=' num2str(R2)]}; title(string)