嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元微信扫码支付:2 元
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
论文《As-Projective-As-Possible Image Stitching with Moving DLT》中的拼接算法,对于视差图像拼接具有一定的鲁棒性,但是对特征点数量及其分布均匀性有较高的要求。
The success of commercial image stitching tools often leads to the impression that image stitching is a “solved problem”. The reality, however, is that many tools give unconvincing results when the input photos violate fairly restrictive imaging assumptions; the main two being that the photos correspond to views that differ purely by rotation, or that the imaged scene is effectively planar. Such assumptions underpin the usage of 2D projective transforms or homographies to align photos. In the hands of the casual user, such conditions are often violated, yielding misalignment artifacts or “ghosting” in the results. Accordingly, many existing image stitching tools depend critically on post-processing routines to conceal ghosting. In this paper, we propose a novel estimation technique called Moving Direct Linear Transformation (Moving DLT) that is able to tweak or fine-tune the projective warp to accommodate the deviations of the input data from the idealized conditions. This produces as-projective-as-possible image alignment that significantly reduces ghosting without compromising the geometric realism of perspective image stitching. Our technique thus lessens the dependency on potentially expensive postprocessing algorithms. In addition, we describe how multiple as-projective-as-possible warps can be simultaneously refined via bundle adjustment to accurately align multiple images for large panorama creation.
mdlt.zip文件中的main.m代码