基本信息
源码名称:adptive filtering,4th edition.pdf
源码大小:11.42M
文件格式:.pdf
开发语言:MATLAB
更新时间:2020-09-14
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 6 元×
微信扫码支付:6 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
Adaptive Filtering Algorithms and Practical Implementation, 4th edition.pdf
Adaptive Filtering Algorithms and Practical Implementation, 4th edition.pdf
Contents 1 Introduction to Adaptive Filtering........................................ 1 1.1 Introduction ......................................................... 1 1.2 Adaptive Signal Processing ........................................ 2 1.3 Introduction to Adaptive Algorithms .............................. 4 1.4 Applications......................................................... 7 References.................................................................... 11 2 Fundamentals of Adaptive Filtering...................................... 13 2.1 Introduction ......................................................... 13 2.2 Signal Representation............................................... 14 2.2.1 Deterministic Signals ..................................... 14 2.2.2 Random Signals ........................................... 15 2.2.3 Ergodicity.................................................. 22 2.3 The Correlation Matrix ............................................. 24 2.4 Wiener Filter ........................................................ 36 2.5 Linearly Constrained Wiener Filter ................................ 41 2.5.1 The Generalized Sidelobe Canceller ..................... 45 2.6 MSE Surface ........................................................ 47 2.7 Bias and Consistency ............................................... 50 2.8 Newton Algorithm .................................................. 51 2.9 Steepest-Descent Algorithm........................................ 51 2.10 Applications Revisited .............................................. 57 2.10.1 System Identification...................................... 57 2.10.2 Signal Enhancement ...................................... 58 2.10.3 Signal Prediction .......................................... 59 2.10.4 Channel Equalization ..................................... 60 2.10.5 Digital Communication System .......................... 69 2.11 Concluding Remarks................................................ 71 2.12 Problems ............................................................ 71 References.................................................................... 76 xv xvi Contents 3 The Least-Mean-Square (LMS) Algorithm.............................. 79 3.1 Introduction ......................................................... 79 3.2 The LMS Algorithm ................................................ 79 3.3 Some Properties of the LMS Algorithm ........................... 82 3.3.1 Gradient Behavior ......................................... 82 3.3.2 Convergence Behavior of the Coefficient Vector ........ 83 3.3.3 Coefficient-Error-Vector Covariance Matrix ............. 85 3.3.4 Behavior of the Error Signal .............................. 88 3.3.5 Minimum Mean-Square Error ............................ 88 3.3.6 Excess Mean-Square Error and Misadjustment.......... 90 3.3.7 Transient Behavior ........................................ 92 3.4 LMS Algorithm Behavior in Nonstationary Environments ....... 94 3.5 Complex LMS Algorithm .......................................... 99 3.6 Examples ............................................................ 100 3.6.1 Analytical Examples ...................................... 100 3.6.2 System Identification Simulations........................ 111 3.6.3 Channel Equalization Simulations ....................... 118 3.6.4 Fast Adaptation Simulations.............................. 118 3.6.5 The Linearly Constrained LMS Algorithm .............. 123 3.7 Concluding Remarks................................................ 128 3.8 Problems ............................................................ 128 References.................................................................... 134 4 LMS-Based Algorithms .................................................... 137 4.1 Introduction ......................................................... 137 4.2 Quantized-Error Algorithms........................................ 138 4.2.1 Sign-Error Algorithm ..................................... 139 4.2.2 Dual-Sign Algorithm...................................... 146 4.2.3 Power-of-Two Error Algorithm........................... 147 4.2.4 Sign-Data Algorithm ...................................... 149 4.3 The LMS-Newton Algorithm ...................................... 149 4.4 The Normalized LMS Algorithm .................................. 152 4.5 The Transform-Domain LMS Algorithm .......................... 154 4.6 The Affine Projection Algorithm................................... 162 4.6.1 Misadjustment in the Affine Projection Algorithm ...... 168 4.6.2 Behavior in Nonstationary Environments................ 177 4.6.3 Transient Behavior ........................................ 180 4.6.4 Complex Affine Projection Algorithm ................... 183 4.7 Examples ............................................................ 184 4.7.1 Analytical Examples ...................................... 184 4.7.2 System Identification Simulations........................ 189 4.7.3 Signal Enhancement Simulations ........................ 192 4.7.4 Signal Prediction Simulations ............................ 196 Contents xvii 4.8 Concluding Remarks................................................ 198 4.9 Problems ............................................................ 199 References.................................................................... 205 5 Conventional RLS Adaptive Filter ....................................... 209 5.1 Introduction ......................................................... 209 5.2 The Recursive Least-Squares Algorithm .......................... 209 5.3 Properties of the Least-Squares Solution .......................... 213 5.3.1 Orthogonality Principle ................................... 214 5.3.2 Relation Between Least-Squares and Wiener Solutions................................................... 215 5.3.3 Influence of the Deterministic Autocorrelation Initialization ............................. 217 5.3.4 Steady-State Behavior of the Coefficient Vector......... 218 5.3.5 Coefficient-Error-Vector Covariance Matrix ............. 220 5.3.6 Behavior of the Error Signal .............................. 221 5.3.7 Excess Mean-Square Error and Misadjustment.......... 225 5.4 Behavior in Nonstationary Environments.......................... 230 5.5 Complex RLS Algorithm ........................................... 234 5.6 Examples ............................................................ 236 5.6.1 Analytical Example ....................................... 236 5.6.2 System Identification Simulations........................ 238 5.6.3 Signal Enhancement Simulations ........................ 240 5.7 Concluding Remarks................................................ 240 5.8 Problems ............................................................ 243 References.................................................................... 246 6 Data-Selective Adaptive Filtering ......................................... 249 6.1 Introduction ......................................................... 249 6.2 Set-Membership Filtering .......................................... 250 6.3 Set-Membership Normalized LMS Algorithm .................... 253 6.4 Set-Membership Affine Projection Algorithm .................... 255 6.4.1 A Trivial Choice for Vector N.k/......................... 259 6.4.2 A Simple Vector N.k/..................................... 260 6.4.3 Reducing the Complexity in the Simplified SM-AP Algorithm......................................... 262 6.5 Set-Membership Binormalized LMS Algorithms ................. 263 6.5.1 SM-BNLMS Algorithm 1 ................................ 265 6.5.2 SM-BNLMS Algorithm 2 ................................ 268 6.6 Computational Complexity ......................................... 269 6.7 Time-Varying N ..................................................... 270 6.8 Partial-Update Adaptive Filtering .................................. 272 6.8.1 Set-Membership Partial-Update NLMS Algorithm ..... 275 6.9 Examples ............................................................ 278 6.9.1 Analytical Example ....................................... 278 6.9.2 System Identification Simulations........................ 279 xviii Contents 6.9.3 Echo Cancellation Environment .......................... 283 6.9.4 Wireless Channel Environment ........................... 290 6.10 Concluding Remarks................................................ 298 6.11 Problems ............................................................ 299 References.................................................................... 303 7 Adaptive Lattice-Based RLS Algorithms ................................ 305 7.1 Introduction ......................................................... 305 7.2 Recursive Least-Squares Prediction................................ 306 7.2.1 Forward Prediction Problem .............................. 306 7.2.2 Backward Prediction Problem ............................ 309 7.3 Order-Updating Equations.......................................... 311 7.3.1 A New Parameter ı.k; i /.................................. 312 7.3.2 Order Updating of d bmin .k; i / and wb.k; i /............... 314 7.3.3 Order Updating of d fmin .k; i / and wf .k; i / .............. 314 7.3.4 Order Updating of Prediction Errors ..................... 315 7.4 Time-Updating Equations .......................................... 317 7.4.1 Time Updating for Prediction Coefficients............... 317 7.4.2 Time Updating for ı.k; i /................................. 319 7.4.3 Order Updating for .k; i /................................ 321 7.5 Joint-Process Estimation ........................................... 324 7.6 Time Recursions of the Least-Squares Error ...................... 329 7.7 Normalized Lattice RLS Algorithm................................ 330 7.7.1 Basic Order Recursions ................................... 331 7.7.2 Feedforward Filtering ..................................... 333 7.8 Error-Feedback Lattice RLS Algorithm ........................... 336 7.8.1 Recursive Formulas for the Reflection Coefficients ..... 336 7.9 Lattice RLS Algorithm Based on A Priori Errors ................. 337 7.10 Quantization Effects ................................................ 339 7.11 Concluding Remarks................................................ 344 7.12 Problems ............................................................ 344 References.................................................................... 347 8 Fast Transversal RLS Algorithms ........................................ 349 8.1 Introduction ......................................................... 349 8.2 Recursive Least-Squares Prediction................................ 350 8.2.1 Forward Prediction Relations............................. 350 8.2.2 Backward Prediction Relations........................... 352 8.3 Joint-Process Estimation ........................................... 353 8.4 Stabilized Fast Transversal RLS Algorithm ....................... 355 8.5 Concluding Remarks................................................ 361 8.6 Problems ............................................................ 362 References.................................................................... 365 9 QR-Decomposition-Based RLS Filters ................................... 367 9.1 Introduction ......................................................... 367 Contents xix 9.2 Triangularization Using QR-Decomposition ...................... 367 9.2.1 Initialization Process ...................................... 369 9.2.2 Input Data Matrix Triangularization ..................... 370 9.2.3 QR-Decomposition RLS Algorithm...................... 377 9.3 Systolic Array Implementation ..................................... 380 9.4 Some Implementation Issues ....................................... 388 9.5 Fast QR-RLS Algorithm............................................ 390 9.5.1 Backward Prediction Problem ............................ 392 9.5.2 Forward Prediction Problem .............................. 394 9.6 Conclusions and Further Reading .................................. 402 9.7 Problems ............................................................ 403 References.................................................................... 408 10 Adaptive IIR Filters ........................................................ 411 10.1 Introduction ......................................................... 411 10.2 Output-Error IIR Filters ............................................ 412 10.3 General Derivative Implementation ................................ 416 10.4 Adaptive Algorithms................................................ 419 10.4.1 Recursive Least-Squares Algorithm...................... 419 10.4.2 The Gauss–Newton Algorithm ........................... 420 10.4.3 Gradient-Based Algorithm................................ 422 10.5 Alternative Adaptive Filter Structures ............................. 423 10.5.1 Cascade Form ............................................. 423 10.5.2 Lattice Structure ........................................... 425 10.5.3 Parallel Form .............................................. 432 10.5.4 Frequency-Domain Parallel Structure .................... 433 10.6 Mean-Square Error Surface ........................................ 442 10.7 Influence of the Filter Structure on the MSE Surface ............. 449 10.8 Alternative Error Formulations..................................... 451 10.8.1 Equation Error Formulation .............................. 451 10.8.2 The Steiglitz–McBride Method........................... 455 10.9 Conclusion .......................................................... 461 10.10 Problems ............................................................ 461 References.................................................................... 464 11 Nonlinear Adaptive Filtering .............................................. 467 11.1 Introduction ......................................................... 467 11.2 The Volterra Series Algorithm ..................................... 468 11.2.1 LMS Volterra Filter ....................................... 470 11.2.2 RLS Volterra Filter ........................................ 474 11.3 Adaptive Bilinear Filters............................................ 480 11.4 MLP Algorithm ..................................................... 484 11.5 RBF Algorithm ..................................................... 489 11.6 Conclusion .......................................................... 495 11.7 Problems ............................................................ 497 References.................................................................... 498 xx Contents 12 Subband Adaptive Filters.................................................. 501 12.1 Introduction ......................................................... 501 12.2 Multirate Systems................................................... 502 12.2.1 Decimation and Interpolation............................. 502 12.3 Filter Banks ......................................................... 505 12.3.1 Two-Band Perfect Reconstruction Filter Banks ......... 509 12.3.2 Analysis of Two-Band Filter Banks ...................... 510 12.3.3 Analysis of M-Band Filter Banks........................ 511 12.3.4 Hierarchical M-Band Filter Banks....................... 511 12.3.5 Cosine-Modulated Filter Banks .......................... 512 12.3.6 Block Representation ..................................... 513 12.4 Subband Adaptive Filters........................................... 514 12.4.1 Subband Identification .................................... 517 12.4.2 Two-Band Identification .................................. 518 12.4.3 Closed-Loop Structure .................................... 519 12.5 Cross-Filters Elimination ........................................... 523 12.5.1 Fractional Delays.......................................... 526 12.6 Delayless Subband Adaptive Filtering ............................. 529 12.6.1 Computational Complexity ............................... 536 12.7 Frequency-Domain Adaptive Filtering............................. 537 12.8 Conclusion .......................................................... 545 12.9 Problems ............................................................ 546 References.................................................................... 548 13 Blind Adaptive Filtering ................................................... 551 13.1 Introduction ......................................................... 551 13.2 Constant-Modulus Related Algorithms............................ 553 13.2.1 Godard Algorithm......................................... 553 13.2.2 Constant-Modulus Algorithm ............................ 554 13.2.3 Sato Algorithm ............................................ 555 13.2.4 Error Surface of CMA .................................... 556 13.3 Affine Projection CM Algorithm................................... 562 13.4 Blind SIMO Equalizers............................................. 568 13.4.1 Identification Conditions.................................. 572 13.5 SIMO-CMA Equalizer.............................................. 573 13.6 Concluding Remarks................................................ 579 13.7 Problems ............................................................ 579 References.................................................................... 582 14 Complex Differentiation ................................................... 585 14.1 Introduction ......................................................... 585 14.2 The Complex Wiener Solution ..................................... 585 14.3 Derivation of the Complex LMS Algorithm ....................... 589 14.4 Useful Results....................................................... 589 References.................................................................... 590 Contents xxi 15 Quantization Effects in the LMS Algorithm............................. 591 15.1 Introduction ......................................................... 591 15.2 Error Description.................................................... 591 15.3 Error Models for Fixed-Point Arithmetic .......................... 593 15.4 Coefficient-Error-Vector Covariance Matrix ...................... 594 15.5 Algorithm Stop ...................................................... 596 15.6 Mean-Square Error.................................................. 597 15.7 Floating-Point Arithmetic Implementation ........................ 598 15.8 Floating-Point Quantization Errors in LMS Algorithm ........... 600 References.................................................................... 603 16 Quantization Effects in the RLS Algorithm ............................. 605 16.1 Introduction ......................................................... 605 16.2 Error Description.................................................... 605 16.3 Error Models for Fixed-Point Arithmetic .......................... 607 16.4 Coefficient-Error-Vector Covariance Matrix ...................... 609 16.5 Algorithm Stop ...................................................... 612 16.6 Mean-Square Error.................................................. 613 16.7 Fixed-Point Implementation Issues ................................ 614 16.8 Floating-Point Arithmetic Implementation ........................ 615 16.9 Floating-Point Quantization Errors in RLS Algorithm ........... 617 References.................................................................... 621 17 Kalman Filters 623 17.1 Introduction ......................................................... 623 17.2 State–Space Model.................................................. 623 17.2.1 Simple Example ........................................... 624 17.3 Kalman Filtering .................................................... 626 17.4 Kalman Filter and RLS ............................................. 632 References.................................................................... 633 18 Analysis of Set-Membership Affine Projection Algorithm............. 635 18.1 Introduction ......................................................... 635 18.2 Probability of Update ............................................... 635 18.3 Misadjustment in the Simplified SM-AP Algorithm .............. 637 18.4 Transient Behavior .................................................. 638 18.5 Concluding Remarks................................................ 639 References.................................................................... 641 Index ............................................................................... 643