基本信息
源码名称:蚁群算法MATLAB
源码大小:5.38KB
文件格式:.m
开发语言:MATLAB
更新时间:2020-08-20
   友情提示:(无需注册或充值,赞助后即可获取资源下载链接)

     嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300

本次赞助数额为: 2 元 
   源码介绍
蚁群算法的MATLAB实现,可用于求解TSP问题

while NC<=NC_max        %停止条件之一:达到最大迭代次数,停止
    %%第二步:将m只蚂蚁放到n个城市上
        Randpos=[];   %随机存取
    for i=1:(ceil(m/n))
        Randpos=[Randpos,randperm(n)];
    end
    Tabu(:,1)=(Randpos(1,1:m))';    %此句不太理解?

    %%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
    for j=2:n     %所在城市不计算
        for i=1:m    
            visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
            J=zeros(1,(n-j 1));       %待访问的城市
            P=J;                      %待访问城市的选择概率分布
            Jc=1;
            for k=1:n
                if length(find(visited==k))==0   %开始时置0
                J(Jc)=k;
                Jc=Jc 1;                         %访问的城市个数自加1
                end
            end
            %下面计算待选城市的概率分布
            for k=1:length(J)
                P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
            end
            P=P/(sum(P));
            %按概率原则选取下一个城市
            Pcum=cumsum(P);     %cumsum,元素累加即求和
            Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线
            to_visit=J(Select(1));
            Tabu(i,j)=to_visit;
        end
    end

    if NC>=2
        Tabu(1,:)=R_best(NC-1,:);
    end

    %%第四步:记录本次迭代最佳路线
    L=zeros(m,1);     %开始距离为0,m*1的列向量
    for i=1:m
        R=Tabu(i,:);
        for j=1:(n-1)
            L(i)=L(i) D(R(j),R(j 1));    %原距离加上第j个城市到第j 1个城市的距离
        end
        L(i)=L(i) D(R(1),R(n));      %一轮下来后走过的距离
    end
    L_best(NC)=min(L);           %最佳距离取最小
    pos=find(L==L_best(NC));
    R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
    L_ave(NC)=mean(L);           %此轮迭代后的平均距离
    NC=NC 1;                      %迭代继续


    %%第五步:更新信息素
    Delta_Tau=zeros(n,n);        %开始时信息素为n*n的0矩阵
    for i=1:m
        for j=1:(n-1)
            Delta_Tau(Tabu(i,j),Tabu(i,j 1))=Delta_Tau(Tabu(i,j),Tabu(i,j 1)) Q/L(i);          
        %此次循环在路径(i,j)上的信息素增量
        end
            Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1)) Q/L(i);
        %此次循环在整个路径上的信息素增量
    end
    Tau=(1-Rho).*Tau Delta_Tau; %考虑信息素挥发,更新后的信息素
    %%第六步:禁忌表清零
    Tabu=zeros(m,n);             %%直到最大迭代次数
end