基本信息
源码名称:现代数字信号处理及其应用作业(homework.m)
源码大小:2.10KB
文件格式:.m
开发语言:MATLAB
更新时间:2020-05-16
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
%(1)产生N=512点的样本序列 data_len = 512; %样本序列的长度 trials = 100; %随机试验的次数 A=zeros(data_len,2);EA=zeros(data_len,1); B=zeros(data_len,2);EB=zeros(data_len,1); for m = 1: trials a1 = -0.975; a2 = 0.95; sigma_v_2 =0.0731; v = sqrt(sigma_v_2) * randn(data_len, 1, trials);%产生v(n) u0 = [0 0]; num = 1; den = [1 a1 a2]; Zi = filtic(num, den, u0); %滤波器的初始条件 u = filter(num, den, v, Zi); %产生样本序列u(n) %(2)用LMS滤波器来估计w1和w2 mu1 = 0.05; mu2 = 0.005; w1 = zeros(2, data_len); w2 = zeros(2, data_len); e1 = zeros(data_len, 1); e2 = zeros(data_len, 1); d1 = zeros(data_len, 1); d2 = zeros(data_len, 1); %LMS迭代过程 for n =3 :data_len - 1 w1( :, n 1) = w1( :, n) mu1 * u(n-1 : -1: n-2, : , m) * conj(e1(n)); w2( :, n 1) = w2( :, n) mu2 * u(n-1 : -1: n-2, : , m) * conj(e2(n)); d1(n 1) = w1( : , n 1)' * u(n: -1: n-1, :, m); d2(n 1) = w2( : , n 1)' * u(n: -1: n-1, :, m); e1(n 1) = u(n 1, : ,m) - d1(n 1); e2(n 1) = u(n 1, : ,m) - d2(n 1); end A = A conj(w1)'; EA = EA e1.^2; B = B conj(w2)'; EB = EB e2.^2; end %剩余均方误差和失调参数 wopt=zeros(2,trials); Jmin=zeros(1,trials); sum_eig=zeros(trials,1); for m=1:trials; rm=xcorr(u(:,:,m),'biased'); R=[rm(512),rm(513);rm(511),rm(512)]; p=[rm(511);rm(510)]; wopt(:,m)=R\p; [v,d]=eig(R); Jmin(m)=rm(512)-p'*wopt(:,m); sum_eig(m)=d(1,1) d(2,2); end sJmin=sum(Jmin)/trials; e1_100trials_ave=sum(e1)/trials; e2_100trials_ave=sum(e2)/trials; Jex1=e1_100trials_ave-sJmin; Jex2=e2_100trials_ave-sJmin; sum_eig_100trials=sum(sum_eig)/100; Jexfin=mu1*sJmin*(sum_eig_100trials/(2-mu1*sum_eig_100trials)); Jexfin2=mu2*sJmin*(sum_eig_100trials/(2-mu2*sum_eig_100trials)); M1=Jexfin/sJmin M2=Jexfin2/sJmin figure(1); plot(A/trials);hold on; plot(conj(w1)'); xlabel('迭代次数');ylabel('权向量');title('步长为0.05权向量收敛曲线'); figure(2); plot(B/trials);hold on; plot(conj(w2)'); xlabel('迭代次数');ylabel('权向量');title('步长为0.005权向量收敛曲线'); figure(3); plot(EA/trials,'*');hold on; plot(EB/trials,'-'); xlabel('迭代次数');ylabel('均方误差');title('步长分别为0.05和0.005学习曲线');