基本信息
源码名称:智能算法萤火虫算法Matlab源代码
源码大小:5.98KB
文件格式:.rar
开发语言:MATLAB
更新时间:2019-05-31
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
来自于剑桥大学教授Yang Xinshe的萤火虫算法Matlab源码,适合各种寻优问题的建模,内含代码的详细说明
来自于剑桥大学教授Yang Xinshe的萤火虫算法Matlab源码,适合各种寻优问题的建模,内含代码的详细说明
Firefly_Algorithm源代码
% ======================================================== % % Files of the Matlab programs included in the book: % % Xin-She Yang, Nature-Inspired Metaheuristic Algorithms, % % Second Edition, Luniver Press, (2010). www.luniver.com % % ======================================================== % % Firefly Algorithm by X S Yang (Cambridge University) % Usage: firefly_simple([number_of_fireflies,MaxGeneration]) % eg: firefly_simple([12,50]); function [best]=firefly_simple(instr) % n=number of fireflies % MaxGeneration=number of pseudo time steps if nargin<1, instr=[12 50]; end n=instr(1); MaxGeneration=instr(2); rand('state',0); % Reset the random generator % ------ Four peak functions --------------------- str1='exp(-(x-4)^2-(y-4)^2) exp(-(x 4)^2-(y-4)^2)'; str2=' 2*exp(-x^2-(y 4)^2) 2*exp(-x^2-y^2)'; funstr=strcat(str1,str2); % Converting to an inline function f=vectorize(inline(funstr)); % range=[xmin xmax ymin ymax]; range=[-5 5 -5 5]; % ------------------------------------------------ alpha=0.2; % Randomness 0--1 (highly random) gamma=1.0; % Absorption coefficient % ------------------------------------------------ % Grid values are used for display only Ngrid=100; dx=(range(2)-range(1))/Ngrid; dy=(range(4)-range(3))/Ngrid; [x,y]=meshgrid(range(1):dx:range(2),... range(3):dy:range(4)); z=f(x,y); % Display the shape of the objective function figure(1); surfc(x,y,z); % ------------------------------------------------ % generating the initial locations of n fireflies [xn,yn,Lightn]=init_ffa(n,range); % Display the paths of fireflies in a figure with % contours of the function to be optimized figure(2); % Iterations or pseudo time marching for i=1:MaxGeneration, %%%%% start iterations % Show the contours of the function contour(x,y,z,15); hold on; % Evaluate new solutions zn=f(xn,yn); % Ranking the fireflies by their light intensity [Lightn,Index]=sort(zn); xn=xn(Index); yn=yn(Index); xo=xn; yo=yn; Lighto=Lightn; % Trace the paths of all roaming fireflies plot(xn,yn,'.','markersize',10,'markerfacecolor','g'); % Move all fireflies to the better locations [xn,yn]=ffa_move(xn,yn,Lightn,xo,yo,Lighto,alpha,gamma,range); drawnow; % Use "hold on" to show the paths of fireflies hold off; end %%%%% end of iterations best(:,1)=xo'; best(:,2)=yo'; best(:,3)=Lighto'; % ----- All subfunctions are listed here --------- % The initial locations of n fireflies function [xn,yn,Lightn]=init_ffa(n,range) xrange=range(2)-range(1); yrange=range(4)-range(3); xn=rand(1,n)*xrange range(1); yn=rand(1,n)*yrange range(3); Lightn=zeros(size(yn)); % Move all fireflies toward brighter ones function [xn,yn]=ffa_move(xn,yn,Lightn,xo,yo,... Lighto,alpha,gamma,range) ni=size(yn,2); nj=size(yo,2); for i=1:ni, % The attractiveness parameter beta=exp(-gamma*r) for j=1:nj, r=sqrt((xn(i)-xo(j))^2 (yn(i)-yo(j))^2); if Lightn(i)<Lighto(j), % Brighter and more attractive beta0=1; beta=beta0*exp(-gamma*r.^2); xn(i)=xn(i).*(1-beta) xo(j).*beta alpha.*(rand-0.5); yn(i)=yn(i).*(1-beta) yo(j).*beta alpha.*(rand-0.5); end end % end for j end % end for i [xn,yn]=findrange(xn,yn,range); % Make sure the fireflies are within the range function [xn,yn]=findrange(xn,yn,range) for i=1:length(yn), if xn(i)<=range(1), xn(i)=range(1); end if xn(i)>=range(2), xn(i)=range(2); end if yn(i)<=range(3), yn(i)=range(3); end if yn(i)>=range(4), yn(i)=range(4); end end % ============== end =====================================