基本信息
源码名称:java 神经网络_源代码
源码大小:0.33M
文件格式:.7z
开发语言:C#
更新时间:2017-05-02
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 6 元×
微信扫码支付:6 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
自己动手写神经网络_源代码
package geym.nn.mlperceptron; import java.util.Arrays; import java.util.Random; import org.neuroph.core.NeuralNetwork; import org.neuroph.core.data.DataSet; import org.neuroph.core.data.DataSetRow; import org.neuroph.core.events.LearningEvent; import org.neuroph.core.events.LearningEventListener; import org.neuroph.core.learning.LearningRule; import org.neuroph.nnet.learning.BackPropagation; import org.neuroph.nnet.learning.MomentumBackpropagation; import org.neuroph.util.TransferFunctionType; public class MomentumParityCheck implements LearningEventListener{ public static void main(String[] args) { new MomentumParityCheck().run(); } public static double[] int2double(int i){ double[] re=new double[32]; for(int j=0;j<32;j ){ re[j]=(double)((i>>j)&1); } return re; } public static String networkOutputDisplay(double[] networkOutput){ if(((int)networkOutput[3])==1)return "正偶数"; if(((int)networkOutput[2])==1)return "负偶数"; if(((int)networkOutput[1])==1)return "正奇数"; if(((int)networkOutput[0])==1)return "负奇数"; return "未知"; } public static String correctClassify(int i){ if(i>0 && i%2==0){ return "正偶数"; }else if(i<0 && i%2==0){ return "负偶数"; }else if(i>0 && i%2!=0){ return "正奇数"; }else if(i<0 && i%2!=0){ return "负奇数"; } return "0"; } /** * 0001 正偶数 * 0010 负偶数 * 0100 正奇数 * 1000 负奇数 * @param i * @return */ public static double[] int2prop(int i){ double[] pe={0d,0d,0d,1d}; double[] ne={0d,0d,1d,0d}; double[] po={0d,1d,0d,0d}; double[] no={1d,0d,0d,0d}; if(i>0 && i%2==0){ return pe; }else if(i<0 && i%2==0){ return ne; }else if(i>0 && i%2!=0){ return po; }else if(i<0 && i%2!=0){ return no; } return pe; } public void run() { DataSet trainingSet = new DataSet(32, 4); for(int i=0;i<2000;i ){ int in=new Random().nextInt(); trainingSet.addRow(new DataSetRow(int2double(in), int2prop(in))); } // 创建神经网络 32个输入 10个神经元隐层 4个 MlPerceptron myMlPerceptron = new MlPerceptronBinOutput(TransferFunctionType.SIGMOID, 32, 10, 4); myMlPerceptron.setLearningRule(new MomentumBackpropagation()); LearningRule learningRule = myMlPerceptron.getLearningRule(); learningRule.addListener(this); // learn the training set System.out.println("Training neural network..."); myMlPerceptron.learn(trainingSet); // test perceptron System.out.println("Testing trained neural network"); testNeuralNetwork(myMlPerceptron); } public static void testNeuralNetwork(NeuralNetwork neuralNet) { int badcount=0; int COUNT=50000; for(int i=0;i<COUNT;i ){ int in=new Random().nextInt(); double[] inputnumber=int2double(in); neuralNet.setInput(inputnumber); neuralNet.calculate(); double[] networkOutput = neuralNet.getOutput(); System.out.print("Input: " in); String networkOutputDisplay=networkOutputDisplay(networkOutput); System.out.println(" Output: " Arrays.toString( networkOutput) networkOutputDisplay ); String cc=correctClassify(in); if(!cc.equals(networkOutputDisplay)){ badcount ; System.out.print("判别错误:" in); System.out.print(" correctClassify=" cc); System.out.println(" networkOutputDisplay=" networkOutputDisplay); } } System.out.println("正确率:" (COUNT-badcount*1.0)/COUNT*100.0 "%"); } @Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation)event.getSource(); System.out.println(bp.getCurrentIteration() ". iteration : " bp.getTotalNetworkError()); } }