基本信息
源码名称:java 神经网络_源代码
源码大小:0.33M
文件格式:.7z
开发语言:C#
更新时间:2017-05-02
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):78630559
本次赞助数额为: 6 元×
微信扫码支付:6 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
自己动手写神经网络_源代码
package geym.nn.mlperceptron;
import java.util.Arrays;
import java.util.Random;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.core.data.DataSet;
import org.neuroph.core.data.DataSetRow;
import org.neuroph.core.events.LearningEvent;
import org.neuroph.core.events.LearningEventListener;
import org.neuroph.core.learning.LearningRule;
import org.neuroph.nnet.learning.BackPropagation;
import org.neuroph.nnet.learning.MomentumBackpropagation;
import org.neuroph.util.TransferFunctionType;
public class MomentumParityCheck implements LearningEventListener{
public static void main(String[] args) {
new MomentumParityCheck().run();
}
public static double[] int2double(int i){
double[] re=new double[32];
for(int j=0;j<32;j ){
re[j]=(double)((i>>j)&1);
}
return re;
}
public static String networkOutputDisplay(double[] networkOutput){
if(((int)networkOutput[3])==1)return "正偶数";
if(((int)networkOutput[2])==1)return "负偶数";
if(((int)networkOutput[1])==1)return "正奇数";
if(((int)networkOutput[0])==1)return "负奇数";
return "未知";
}
public static String correctClassify(int i){
if(i>0 && i%2==0){
return "正偶数";
}else if(i<0 && i%2==0){
return "负偶数";
}else if(i>0 && i%2!=0){
return "正奇数";
}else if(i<0 && i%2!=0){
return "负奇数";
}
return "0";
}
/**
* 0001 正偶数
* 0010 负偶数
* 0100 正奇数
* 1000 负奇数
* @param i
* @return
*/
public static double[] int2prop(int i){
double[] pe={0d,0d,0d,1d};
double[] ne={0d,0d,1d,0d};
double[] po={0d,1d,0d,0d};
double[] no={1d,0d,0d,0d};
if(i>0 && i%2==0){
return pe;
}else if(i<0 && i%2==0){
return ne;
}else if(i>0 && i%2!=0){
return po;
}else if(i<0 && i%2!=0){
return no;
}
return pe;
}
public void run() {
DataSet trainingSet = new DataSet(32, 4);
for(int i=0;i<2000;i ){
int in=new Random().nextInt();
trainingSet.addRow(new DataSetRow(int2double(in), int2prop(in)));
}
// 创建神经网络 32个输入 10个神经元隐层 4个
MlPerceptron myMlPerceptron = new MlPerceptronBinOutput(TransferFunctionType.SIGMOID, 32, 10, 4);
myMlPerceptron.setLearningRule(new MomentumBackpropagation());
LearningRule learningRule = myMlPerceptron.getLearningRule();
learningRule.addListener(this);
// learn the training set
System.out.println("Training neural network...");
myMlPerceptron.learn(trainingSet);
// test perceptron
System.out.println("Testing trained neural network");
testNeuralNetwork(myMlPerceptron);
}
public static void testNeuralNetwork(NeuralNetwork neuralNet) {
int badcount=0;
int COUNT=50000;
for(int i=0;i<COUNT;i ){
int in=new Random().nextInt();
double[] inputnumber=int2double(in);
neuralNet.setInput(inputnumber);
neuralNet.calculate();
double[] networkOutput = neuralNet.getOutput();
System.out.print("Input: " in);
String networkOutputDisplay=networkOutputDisplay(networkOutput);
System.out.println(" Output: " Arrays.toString( networkOutput) networkOutputDisplay );
String cc=correctClassify(in);
if(!cc.equals(networkOutputDisplay)){
badcount ;
System.out.print("判别错误:" in);
System.out.print(" correctClassify=" cc);
System.out.println(" networkOutputDisplay=" networkOutputDisplay);
}
}
System.out.println("正确率:" (COUNT-badcount*1.0)/COUNT*100.0 "%");
}
@Override
public void handleLearningEvent(LearningEvent event) {
BackPropagation bp = (BackPropagation)event.getSource();
System.out.println(bp.getCurrentIteration() ". iteration : " bp.getTotalNetworkError());
}
}