嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元微信扫码支付:2 元
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
基于opencv的java车牌检测识别库(支持linux、windows、mac、Android平台),识别准确率79.7%以上
被识别的图片如下:
识别结果如下:
package cc.eguid.charsocr;
import java.awt.Image;
import java.awt.image.BufferedImage;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferByte;
import java.awt.image.SampleModel;
import java.math.BigDecimal;
import java.util.Vector;
import org.bytedeco.javacpp.opencv_imgcodecs;
import org.bytedeco.javacpp.Pointer;
import org.bytedeco.javacpp.opencv_core;
import org.bytedeco.javacpp.opencv_core.CvType;
import org.bytedeco.javacpp.opencv_core.CvTypeInfo;
import org.bytedeco.javacpp.opencv_core.Mat;
import cc.eguid.charsocr.core.CharsRecognise;
import cc.eguid.charsocr.core.PlateDetect;
/**
* 车牌识别
* @author eguid
*
*/
public class PlateRecognition {
static PlateDetect plateDetect =null;
static CharsRecognise cr=null;
static{
plateDetect=new PlateDetect();
plateDetect.setPDLifemode(true);
cr = new CharsRecognise();
}
/**
* 单个车牌识别
* @param mat
* @return
*/
public static String plateRecognise(Mat mat){
Vector<Mat> matVector = new Vector<Mat>(1);
if (0 == plateDetect.plateDetect(mat, matVector)) {
if(matVector.size()>0){
return cr.charsRecognise(matVector.get(0));
}
}
return null;
}
/**
* 多车牌识别
* @param mat
* @return
*/
public static String[] mutiPlateRecognise(Mat mat){
PlateDetect plateDetect = new PlateDetect();
plateDetect.setPDLifemode(true);
Vector<Mat> matVector = new Vector<Mat>(10);
if (0 == plateDetect.plateDetect(mat, matVector)) {
CharsRecognise cr = new CharsRecognise();
String[] results=new String[matVector.size()];
for (int i = 0; i < matVector.size(); i) {
String result = cr.charsRecognise(matVector.get(i));
results[i]=result;
}
return results;
}
return null;
}
/**
* 单个车牌识别
* @param mat
* @return
*/
public static String plateRecognise(String imgPath){
Mat src = opencv_imgcodecs.imread(imgPath);
return plateRecognise(src);
}
/**
* 多车牌识别
* @param mat
* @return
*/
public static String[] mutiPlateRecognise(String imgPath){
Mat src = opencv_imgcodecs.imread(imgPath);
return mutiPlateRecognise(src);
}
public static void main(String[] args){
int sum=100;
int errNum=0;
int sumTime=0;
long longTime=0;
for(int i=sum;i>0;i--){
//C:\\Users\\Administrator\\Desktop\\1234.jpg
//D:\\openCV\\vlpr4j-master\\vlpr4j-master\\res\\image\\test_image\\plate_judge.jpg
String imgPath = "D:\\openCV\\vlpr4j-master\\vlpr4j-master\\res\\image\\test_image\\plate_judge.jpg";
Mat src = opencv_imgcodecs.imread(imgPath);
long now =System.currentTimeMillis();
String ret=plateRecognise(src);
System.err.println(ret);
long s=System.currentTimeMillis()-now;
if(s>longTime){
longTime=s;
}
sumTime =s;
if(!"川A0CP56".equals(ret)){
errNum ;
}
}
System.err.println("总数量:" sum);
System.err.println("单次最长耗时:" longTime "ms");
BigDecimal errSum=new BigDecimal(errNum);
BigDecimal sumNum=new BigDecimal(sum);
BigDecimal c=sumNum.subtract(errSum).divide(sumNum).multiply(new BigDecimal(100));
System.err.println("总耗时:" sumTime "ms,平均处理时长:" sumTime/sum "ms,错误数量:" errNum ",正确识别率:" c "%");
}
}