基本信息
源码名称:deepsort
源码大小:6.09M
文件格式:.zip
开发语言:Python
更新时间:2022-05-07
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 10 元×
微信扫码支付:10 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
多目标检测
多目标检测
class DeepSort(object): def __init__(self, model_path, model_config=None, max_dist=0.2, min_confidence=0.3, nms_max_overlap=1.0, max_iou_distance=0.7, max_age=70, n_init=3, nn_budget=100, use_cuda=True): self.min_confidence = min_confidence self.nms_max_overlap = nms_max_overlap if model_config is None: self.extractor = Extractor(model_path, use_cuda=use_cuda) else: self.extractor = FastReIDExtractor(model_config, model_path, use_cuda=use_cuda) max_cosine_distance = max_dist metric = NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) self.tracker = Tracker(metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init) def update(self, bbox_xywh, confidences, ori_img): self.height, self.width = ori_img.shape[:2] # generate detections features = self._get_features(bbox_xywh, ori_img) bbox_tlwh = self._xywh_to_tlwh(bbox_xywh) detections = [Detection(bbox_tlwh[i], conf, features[i]) for i,conf in enumerate(confidences) if conf>self.min_confidence] # run on non-maximum supression boxes = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) indices = non_max_suppression(boxes, self.nms_max_overlap, scores) detections = [detections[i] for i in indices] # update tracker self.tracker.predict() self.tracker.update(detections) # output bbox identities outputs = [] for track in self.tracker.tracks: if not track.is_confirmed() or track.time_since_update > 1: continue box = track.to_tlwh() x1,y1,x2,y2 = self._tlwh_to_xyxy(box) track_id = track.track_id outputs.append(np.array([x1,y1,x2,y2,track_id], dtype=np.int)) if len(outputs) > 0: outputs = np.stack(outputs,axis=0) return outputs """ TODO: Convert bbox from xc_yc_w_h to xtl_ytl_w_h Thanks JieChen91@github.com for reporting this bug! """ @staticmethod def _xywh_to_tlwh(bbox_xywh): if isinstance(bbox_xywh, np.ndarray): bbox_tlwh = bbox_xywh.copy() elif isinstance(bbox_xywh, torch.Tensor): bbox_tlwh = bbox_xywh.clone() bbox_tlwh[:,0] = bbox_xywh[:,0] - bbox_xywh[:,2]/2. bbox_tlwh[:,1] = bbox_xywh[:,1] - bbox_xywh[:,3]/2. return bbox_tlwh def _xywh_to_xyxy(self, bbox_xywh): x,y,w,h = bbox_xywh x1 = max(int(x-w/2),0) x2 = min(int(x w/2),self.width-1) y1 = max(int(y-h/2),0) y2 = min(int(y h/2),self.height-1) return x1,y1,x2,y2 def _tlwh_to_xyxy(self, bbox_tlwh): """ TODO: Convert bbox from xtl_ytl_w_h to xc_yc_w_h Thanks JieChen91@github.com for reporting this bug! """ x,y,w,h = bbox_tlwh x1 = max(int(x),0) x2 = min(int(x w),self.width-1) y1 = max(int(y),0) y2 = min(int(y h),self.height-1) return x1,y1,x2,y2 def _xyxy_to_tlwh(self, bbox_xyxy): x1,y1,x2,y2 = bbox_xyxy t = x1 l = y1 w = int(x2-x1) h = int(y2-y1) return t,l,w,h def _get_features(self, bbox_xywh, ori_img): im_crops = [] for box in bbox_xywh: x1,y1,x2,y2 = self._xywh_to_xyxy(box) im = ori_img[y1:y2,x1:x2] im_crops.append(im) if im_crops: features = self.extractor(im_crops) else: features = np.array([]) return features