基本信息
源码名称:基于tensorflow的模型预测与评估
源码大小:2.44KB
文件格式:.py
开发语言:Python
更新时间:2022-03-07
   友情提示:(无需注册或充值,赞助后即可获取资源下载链接)

     嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300

本次赞助数额为: 1 元 
   源码介绍

# 准备数据建立模型训练模型预测(测试) 评估模型。
# 1.准备数据
(train_x, train_y), (test_x, test_y) = imdb.load_data(num_words=10000)
t1 = Tokenizer(num_words=10000)
t1.fit_on_sequences(train_x)
train_x = t1.sequences_to_matrix(train_x)
test_x = t1.sequences_to_matrix(test_x)
# 2.建立模型
model = Sequential()
model.add(Dense(units=32, activation="relu", input_shape=(25000, 10000)))
model.add(Dense(units=32, activation="relu"))
model.add(Dense(units=1, activation="sigmoid"))
model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"])
# 3.训练
model.fit(x=train_x, y=train_y, batch_size=256, epochs=5)
# 4.预测
result = model.predict(x=test_x, batch_size=256)
# 5.评估
score = model.evaluate(test_x, test_y)
print("预测的结果:", result)
print("真实的答案:", test_y)
print("考试得分:", score)