基本信息
源码名称:人工智能
源码大小:23.74M
文件格式:.pdf
开发语言:Python
更新时间:2021-08-18
   友情提示:(无需注册或充值,赞助后即可获取资源下载链接)

     嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300

本次赞助数额为: 10 元 
   源码介绍
OReilly.Artificial.Intelligence.in.Finance.pdf

Table of Contents
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Part I. Machine Intelligence
1. Artificial Intelligence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Algorithms 3
Types of Data 4
Types of Learning 4
Types of Tasks 8
Types of Approaches 8
Neural Networks 9
OLS Regression 9
Estimation with Neural Networks 13
Classification with Neural Networks 20
Importance of Data 22
Small Data Set 23
Larger Data Set 26
Big Data 28
Conclusions 29
References 30
2. Superintelligence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Success Stories 32
Atari 32
Go 38
Chess 40
Importance of Hardware 42
iii
Forms of Intelligence 44
Paths to Superintelligence 45
Networks and Organizations 46
Biological Enhancements 46
Brain-Machine Hybrids 47
Whole Brain Emulation 48
Artificial Intelligence 49
Intelligence Explosion 50
Goals and Control 50
Superintelligence and Goals 51
Superintelligence and Control 53
Potential Outcomes 54
Conclusions 56
References 56
Part II. Finance and Machine Learning
3. Normative Finance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Uncertainty and Risk 62
Definitions 62
Numerical Example 63
Expected Utility Theory 66
Assumptions and Results 66
Numerical Example 69
Mean-Variance Portfolio Theory 72
Assumptions and Results 72
Numerical Example 75
Capital Asset Pricing Model 82
Assumptions and Results 83
Numerical Example 85
Arbitrage Pricing Theory 90
Assumptions and Results 91
Numerical Example 93
Conclusions 95
References 96
4. Data-Driven Finance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Scientific Method 100
Financial Econometrics and Regression 101
Data Availability 104
Programmatic APIs 105
iv | Table of Contents
Structured Historical Data 105
Structured Streaming Data 108
Unstructured Historical Data 110
Unstructured Streaming Data 112
Alternative Data 113
Normative Theories Revisited 117
Expected Utility and Reality 118
Mean-Variance Portfolio Theory 123
Capital Asset Pricing Model 130
Arbitrage Pricing Theory 134
Debunking Central Assumptions 143
Normally Distributed Returns 143
Linear Relationships 153
Conclusions 155
References 156
Python Code 156
5. Machine Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Learning 162
Data 162
Success 165
Capacity 169
Evaluation 172
Bias and Variance 178
Cross-Validation 180
Conclusions 183
References 183
6. AI-First Finance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Efficient Markets 186
Market Prediction Based on Returns Data 192
Market Prediction with More Features 199
Market Prediction Intraday 204
Conclusions 205
References 207
Part III. Statistical Inefficiencies
7. Dense Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
The Data 212
Baseline Prediction 214
Table of Contents | v
Normalization 218
Dropout 220
Regularization 222
Bagging 225
Optimizers 227
Conclusions 228
References 228
8. Recurrent Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
First Example 230
Second Example 234
Financial Price Series 237
Financial Return Series 240
Financial Features 242
Estimation 243
Classification 244
Deep RNNs 245
Conclusions 246
References 247
9. Reinforcement Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Fundamental Notions 250
OpenAI Gym 251
Monte Carlo Agent 255
Neural Network Agent 257
DQL Agent 260
Simple Finance Gym 264
Better Finance Gym 268
FQL Agent 271
Conclusions 277
References 278
Part IV. Algorithmic Trading
10. Vectorized Backtesting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Backtesting an SMA-Based Strategy 282
Backtesting a Daily DNN-Based Strategy 289
Backtesting an Intraday DNN-Based Strategy 295
Conclusions 301
References 301
vi | Table of Contents
11. Risk Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Trading Bot 304
Vectorized Backtesting 308
Event-Based Backtesting 311
Assessing Risk 318
Backtesting Risk Measures 322
Stop Loss 324
Trailing Stop Loss 326
Take Profit 328
Conclusions 332
References 332
Python Code 333
Finance Environment 333
Trading Bot 335
Backtesting Base Class 339
Backtesting Class 342
12. Execution and Deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Oanda Account 346
Data Retrieval 347
Order Execution 351
Trading Bot 357
Deployment 364
Conclusions 368
References 369
Python Code 369
Oanda Environment 369
Vectorized Backtesting 372
Oanda Trading Bot 373
Part V. Outlook
13. AI-Based Competition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
AI and Finance 380
Lack of Standardization 382
Education and Training 383
Fight for Resources 385
Market Impact 386
Competitive Scenarios 387
Risks, Regulation, and Oversight 388
Table of Contents | vii
Conclusions 391
References 392
14. Financial Singularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Notions and Definitions 396
What Is at Stake? 396
Paths to Financial Singularity 400
Orthogonal Skills and Resources 401
Scenarios Before and After 402
Star Trek or Star Wars 403
Conclusions 404
References 404
Part VI. Appendixes
A. Interactive Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
B. Neural Network Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
C. Convolutional Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447