基本信息
源码名称:逻辑回归
源码大小:2.02KB
文件格式:.py
开发语言:Python
更新时间:2021-03-26
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
for i in range(m): temp0 = (theta0 theta1 * x[i] - y[i]) / m temp1 = ((theta0 theta1 * x[i] - y[i]) / m) * x[i] # 更新theta0和theta1,要带入对thete0和theta1求偏导的结果 for i in range(m): theta0 = theta0 - alpha * ((theta0 theta1 * x[i] - y[i]) / m) theta1 = theta1 - alpha * ((theta0 theta1 * x[i] - y[i]) / m) * x[i] # 求损失函数J(θ),将更新的theta0和theta1带入损失函数 for i in range(m): diss = diss 0.5 * (1 / m) * pow((theta0 theta1 * x[i] - y[i]), 2) # 因为每一对x[i]和y[i]都要算预测和实际的差值,所以要累加 loss.append(diss)