基本信息
源码名称:OSVOS视频分割
源码大小:4.24M
文件格式:.rar
开发语言:Python
更新时间:2021-02-24
   友情提示:(无需注册或充值,赞助后即可获取资源下载链接)

     嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300

本次赞助数额为: 5 元 
   源码介绍
osvos视频分割论文代码

from __future__ import print_function
"""
Sergi Caelles (scaelles@vision.ee.ethz.ch)

This file is part of the OSVOS paper presented in:
    Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixe, Daniel Cremers, Luc Van Gool
    One-Shot Video Object Segmentation
    CVPR 2017
Please consider citing the paper if you use this code.
"""
import os
import sys
from PIL import Image
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
import matplotlib.pyplot as plt
# Import OSVOS files
root_folder = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.abspath(root_folder))
import osvos
from dataset import Dataset
os.chdir(root_folder)

# User defined parameters
seq_name = "car-shadow"
gpu_id = 0
train_model = True
result_path = os.path.join('DAVIS', 'Results', 'Segmentations', '480p', 'OSVOS', seq_name)

# Train parameters
parent_path = os.path.join('models', 'OSVOS_parent', 'OSVOS_parent.ckpt-50000')
logs_path = os.path.join('models', seq_name)
max_training_iters = 500

# Define Dataset
test_frames = sorted(os.listdir(os.path.join('DAVIS', 'JPEGImages', '480p', seq_name)))
test_imgs = [os.path.join('DAVIS', 'JPEGImages', '480p', seq_name, frame) for frame in test_frames]
if train_model:
    train_imgs = [os.path.join('DAVIS', 'JPEGImages', '480p', seq_name, '00000.jpg') ' '
                  os.path.join('DAVIS', 'Annotations', '480p', seq_name, '00000.png')]
    dataset = Dataset(train_imgs, test_imgs, './', data_aug=True)
else:
    dataset = Dataset(None, test_imgs, './')

# Train the network
if train_model:
    # More training parameters
    learning_rate = 1e-8
    save_step = max_training_iters
    side_supervision = 3
    display_step = 10
    with tf.Graph().as_default():
        with tf.device('/gpu:' str(gpu_id)):
            global_step = tf.Variable(0, name='global_step', trainable=False)
            osvos.train_finetune(dataset, parent_path, side_supervision, learning_rate, logs_path, max_training_iters,
                                 save_step, display_step, global_step, iter_mean_grad=1, ckpt_name=seq_name)

# Test the network
with tf.Graph().as_default():
    with tf.device('/gpu:' str(gpu_id)):
        checkpoint_path = os.path.join('models', seq_name, seq_name '.ckpt-' str(max_training_iters))
        osvos.test(dataset, checkpoint_path, result_path)

# Show results
overlay_color = [255, 0, 0]
transparency = 0.6
plt.ion()
for img_p in test_frames:
    frame_num = img_p.split('.')[0]
    img = np.array(Image.open(os.path.join('DAVIS', 'JPEGImages', '480p', seq_name, img_p)))
    mask = np.array(Image.open(os.path.join(result_path, frame_num '.png')))
    mask = mask//np.max(mask)
    im_over = np.ndarray(img.shape)
    im_over[:, :, 0] = (1 - mask) * img[:, :, 0] mask * (overlay_color[0]*transparency (1-transparency)*img[:, :, 0])
    im_over[:, :, 1] = (1 - mask) * img[:, :, 1] mask * (overlay_color[1]*transparency (1-transparency)*img[:, :, 1])
    im_over[:, :, 2] = (1 - mask) * img[:, :, 2] mask * (overlay_color[2]*transparency (1-transparency)*img[:, :, 2])
    plt.imshow(im_over.astype(np.uint8))
    plt.axis('off')
    plt.show()
    plt.pause(0.01)
    plt.clf()