嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元微信扫码支付:2 元
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
class MyRNN(keras.Model):
def __init__(self, units):
super(MyRNN, self).__init__()
# transform text to embedding representation
# [b, 80] => [b, 80, 100]
self.embedding = layers.Embedding(total_words, embedding_len,
input_length=max_review_len)
# [b, 80, 100] , h_dim: 64
self.rnn = keras.Sequential([
# layers.SimpleRNN(units, dropout=0.5, return_sequences=True, unroll=True),
# layers.SimpleRNN(units, dropout=0.5, unroll=True)
layers.LSTM(units, dropout=0.5, return_sequences=True, unroll=True),
layers.LSTM(units, dropout=0.5, unroll=True)
])
# fc, [b, 80, 100] => [b, 64] => [b, 1]
self.outlayer = layers.Dense(1)