基本信息
源码名称:GAE算法.py
源码大小:4.69KB
文件格式:.py
开发语言:Python
更新时间:2020-10-29
   友情提示:(无需注册或充值,赞助后即可获取资源下载链接)

     嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300

本次赞助数额为: 2 元 
   源码介绍


from gae.layers import GraphConvolution, GraphConvolutionSparse, InnerProductDecoder
#import tensorflow as tf
import tensorflow.compat.v1 as tf
flags =tf.compat.v1.flags
#flags = tf.app.flags
FLAGS = flags.FLAGS


class Model(object):
    def __init__(self, **kwargs):
        allowed_kwargs = {'name', 'logging'}
        for kwarg in kwargs.keys():
            assert kwarg in allowed_kwargs, 'Invalid keyword argument: '   kwarg

        for kwarg in kwargs.keys():
            assert kwarg in allowed_kwargs, 'Invalid keyword argument: '   kwarg
        name = kwargs.get('name')
        if not name:
            name = self.__class__.__name__.lower()
        self.name = name

        logging = kwargs.get('logging', False)
        self.logging = logging

        self.vars = {}

    def _build(self):
        raise NotImplementedError

    def build(self):
        """ Wrapper for _build() """
        with tf.variable_scope(self.name):
            self._build()
        variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name)
        self.vars = {var.name: var for var in variables}

    def fit(self):
        pass

    def predict(self):
        pass


class GCNModelAE(Model):
    def __init__(self, placeholders, num_features, features_nonzero, **kwargs):
        super(GCNModelAE, self).__init__(**kwargs)

        self.inputs = placeholders['features']
        self.input_dim = num_features
        self.features_nonzero = features_nonzero
        self.adj = placeholders['adj']
        self.dropout = placeholders['dropout']
        self.build()

    def _build(self):
        self.hidden1 = GraphConvolutionSparse(input_dim=self.input_dim,
                                              output_dim=FLAGS.hidden1,
                                              adj=self.adj,
                                              features_nonzero=self.features_nonzero,
                                              act=tf.nn.relu,
                                              dropout=self.dropout,
                                              logging=self.logging)(self.inputs)

        self.embeddings = GraphConvolution(input_dim=FLAGS.hidden1,
                                           output_dim=FLAGS.hidden2,
                                           adj=self.adj,
                                           act=lambda x: x,
                                           dropout=self.dropout,
                                           logging=self.logging)(self.hidden1)

        self.z_mean = self.embeddings

        self.reconstructions = InnerProductDecoder(input_dim=FLAGS.hidden2,
                                      act=lambda x: x,
                                      logging=self.logging)(self.embeddings)


class GCNModelVAE(Model):
    def __init__(self, placeholders, num_features, num_nodes, features_nonzero, **kwargs):
        super(GCNModelVAE, self).__init__(**kwargs)

        self.inputs = placeholders['features']
        self.input_dim = num_features
        self.features_nonzero = features_nonzero
        self.n_samples = num_nodes
        self.adj = placeholders['adj']
        self.dropout = placeholders['dropout']
        self.build()

    def _build(self):
        self.hidden1 = GraphConvolutionSparse(input_dim=self.input_dim,
                                              output_dim=FLAGS.hidden1,
                                              adj=self.adj,
                                              features_nonzero=self.features_nonzero,
                                              act=tf.nn.relu,
                                              dropout=self.dropout,
                                              logging=self.logging)(self.inputs)

        self.z_mean = GraphConvolution(input_dim=FLAGS.hidden1,
                                       output_dim=FLAGS.hidden2,
                                       adj=self.adj,
                                       act=lambda x: x,
                                       dropout=self.dropout,
                                       logging=self.logging)(self.hidden1)

        self.z_log_std = GraphConvolution(input_dim=FLAGS.hidden1,
                                          output_dim=FLAGS.hidden2,
                                          adj=self.adj,
                                          act=lambda x: x,
                                          dropout=self.dropout,
                                          logging=self.logging)(self.hidden1)

        self.z = self.z_mean   tf.random_normal([self.n_samples, FLAGS.hidden2]) * tf.exp(self.z_log_std)

        self.reconstructions = InnerProductDecoder(input_dim=FLAGS.hidden2,
                                      act=lambda x: x,
                                      logging=self.logging)(self.z)