基本信息
源码名称:GAE算法.py
源码大小:4.69KB
文件格式:.py
开发语言:Python
更新时间:2020-10-29
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):78630559
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
from gae.layers import GraphConvolution, GraphConvolutionSparse, InnerProductDecoder
#import tensorflow as tf
import tensorflow.compat.v1 as tf
flags =tf.compat.v1.flags
#flags = tf.app.flags
FLAGS = flags.FLAGS
class Model(object):
def __init__(self, **kwargs):
allowed_kwargs = {'name', 'logging'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' kwarg
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' kwarg
name = kwargs.get('name')
if not name:
name = self.__class__.__name__.lower()
self.name = name
logging = kwargs.get('logging', False)
self.logging = logging
self.vars = {}
def _build(self):
raise NotImplementedError
def build(self):
""" Wrapper for _build() """
with tf.variable_scope(self.name):
self._build()
variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name)
self.vars = {var.name: var for var in variables}
def fit(self):
pass
def predict(self):
pass
class GCNModelAE(Model):
def __init__(self, placeholders, num_features, features_nonzero, **kwargs):
super(GCNModelAE, self).__init__(**kwargs)
self.inputs = placeholders['features']
self.input_dim = num_features
self.features_nonzero = features_nonzero
self.adj = placeholders['adj']
self.dropout = placeholders['dropout']
self.build()
def _build(self):
self.hidden1 = GraphConvolutionSparse(input_dim=self.input_dim,
output_dim=FLAGS.hidden1,
adj=self.adj,
features_nonzero=self.features_nonzero,
act=tf.nn.relu,
dropout=self.dropout,
logging=self.logging)(self.inputs)
self.embeddings = GraphConvolution(input_dim=FLAGS.hidden1,
output_dim=FLAGS.hidden2,
adj=self.adj,
act=lambda x: x,
dropout=self.dropout,
logging=self.logging)(self.hidden1)
self.z_mean = self.embeddings
self.reconstructions = InnerProductDecoder(input_dim=FLAGS.hidden2,
act=lambda x: x,
logging=self.logging)(self.embeddings)
class GCNModelVAE(Model):
def __init__(self, placeholders, num_features, num_nodes, features_nonzero, **kwargs):
super(GCNModelVAE, self).__init__(**kwargs)
self.inputs = placeholders['features']
self.input_dim = num_features
self.features_nonzero = features_nonzero
self.n_samples = num_nodes
self.adj = placeholders['adj']
self.dropout = placeholders['dropout']
self.build()
def _build(self):
self.hidden1 = GraphConvolutionSparse(input_dim=self.input_dim,
output_dim=FLAGS.hidden1,
adj=self.adj,
features_nonzero=self.features_nonzero,
act=tf.nn.relu,
dropout=self.dropout,
logging=self.logging)(self.inputs)
self.z_mean = GraphConvolution(input_dim=FLAGS.hidden1,
output_dim=FLAGS.hidden2,
adj=self.adj,
act=lambda x: x,
dropout=self.dropout,
logging=self.logging)(self.hidden1)
self.z_log_std = GraphConvolution(input_dim=FLAGS.hidden1,
output_dim=FLAGS.hidden2,
adj=self.adj,
act=lambda x: x,
dropout=self.dropout,
logging=self.logging)(self.hidden1)
self.z = self.z_mean tf.random_normal([self.n_samples, FLAGS.hidden2]) * tf.exp(self.z_log_std)
self.reconstructions = InnerProductDecoder(input_dim=FLAGS.hidden2,
act=lambda x: x,
logging=self.logging)(self.z)