基本信息
源码名称:机器学习k means算法实现图像分割
源码大小:3.29KB
文件格式:.py
开发语言:Python
更新时间:2020-10-17
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
手写k means算法并应用到图像
import numpy as np
import random
def loss_function(present_center, pre_center):
'''
损失函数,计算上一次与当前聚类中的差异(像素差的平方和)
:param present_center: 当前聚类中心
:param pre_center: 上一次聚类中心
:return: 损失值
'''
present_center = np.array(present_center)
pre_center = np.array(pre_center)
return np.sum((present_center - pre_center)**2)
def classifer(intput_signal, center):
'''
分类器(通过当前的聚类中心,给输入图像分类)
:param intput_signal: 输入图像
:param center: 聚类中心
:return: 标签矩阵
'''
input_row, input_col= intput_signal.shape # 输入图像的尺寸
pixls_labels = np.zeros((input_row, input_col)) # 储存所有像素标签
pixl_distance_t = [] # 单个元素与所有聚类中心的距离,临时用
for i in range(input_row):
for j in range(input_col):
# 计算每个像素与所有聚类中心的差平方
for k in range(len(center)):
distance_t = np.sum(abs((intput_signal[i, j]).astype(int) - center[k].astype(int))**2)
pixl_distance_t.append(distance_t)
# 差异最小则为该类
pixls_labels[i, j] = int(pixl_distance_t.index(min(pixl_distance_t)))
# 清空该list,为下一个像素点做准备
pixl_distance_t = []
return pixls_labels
def k_means(input_signal, center_num, threshold):
'''
基于k-means算法的图像分割(适用于灰度图)
:param input_signal: 输入图像
:param center_num: 聚类中心数目
:param threshold: 迭代阈值
:return:
'''
input_signal_cp = np.copy(input_signal) # 输入信号的副本
input_row, input_col = input_signal_cp.shape # 输入图像的尺寸
pixls_labels = np.zeros((input_row, input_col)) # 储存所有像素标签
# 随机初始聚类中心行标与列标
initial_center_row_num = [i for i in range(input_row)]
random.shuffle(initial_center_row_num)
initial_center_row_num = initial_center_row_num[:center_num]
initial_center_col_num = [i for i in range(input_col)]
random.shuffle(initial_center_col_num)
initial_center_col_num = initial_center_col_num[:center_num]
# 当前的聚类中心
present_center = []
for i in range(center_num):
present_center.append(input_signal_cp[initial_center_row_num[i], initial_center_row_num[i]])
pixls_labels = classifer(input_signal_cp, present_center)
num = 0 # 用于记录迭代次数
while True:
pre_centet = present_center.copy() # 储存前一次的聚类中心
# 计算当前聚类中心
for n in range(center_num):
temp = np.where(pixls_labels == n)
present_center[n] = sum(input_signal_cp[temp].astype(int)) / len(input_signal_cp[temp])
# 根据当前聚类中心分类
pixls_labels = classifer(input_signal_cp, present_center)
# 计算上一次聚类中心与当前聚类中心的差异
loss = loss_function(present_center, pre_centet)
num = num 1
print("Step:" str(num) " Loss:" str(loss))
# 当损失小于迭代阈值时,结束迭代
if loss <= threshold:
break
return pixls_labels
手写k means算法并应用到图像
import numpy as np
import random
def loss_function(present_center, pre_center):
'''
损失函数,计算上一次与当前聚类中的差异(像素差的平方和)
:param present_center: 当前聚类中心
:param pre_center: 上一次聚类中心
:return: 损失值
'''
present_center = np.array(present_center)
pre_center = np.array(pre_center)
return np.sum((present_center - pre_center)**2)
def classifer(intput_signal, center):
'''
分类器(通过当前的聚类中心,给输入图像分类)
:param intput_signal: 输入图像
:param center: 聚类中心
:return: 标签矩阵
'''
input_row, input_col= intput_signal.shape # 输入图像的尺寸
pixls_labels = np.zeros((input_row, input_col)) # 储存所有像素标签
pixl_distance_t = [] # 单个元素与所有聚类中心的距离,临时用
for i in range(input_row):
for j in range(input_col):
# 计算每个像素与所有聚类中心的差平方
for k in range(len(center)):
distance_t = np.sum(abs((intput_signal[i, j]).astype(int) - center[k].astype(int))**2)
pixl_distance_t.append(distance_t)
# 差异最小则为该类
pixls_labels[i, j] = int(pixl_distance_t.index(min(pixl_distance_t)))
# 清空该list,为下一个像素点做准备
pixl_distance_t = []
return pixls_labels
def k_means(input_signal, center_num, threshold):
'''
基于k-means算法的图像分割(适用于灰度图)
:param input_signal: 输入图像
:param center_num: 聚类中心数目
:param threshold: 迭代阈值
:return:
'''
input_signal_cp = np.copy(input_signal) # 输入信号的副本
input_row, input_col = input_signal_cp.shape # 输入图像的尺寸
pixls_labels = np.zeros((input_row, input_col)) # 储存所有像素标签
# 随机初始聚类中心行标与列标
initial_center_row_num = [i for i in range(input_row)]
random.shuffle(initial_center_row_num)
initial_center_row_num = initial_center_row_num[:center_num]
initial_center_col_num = [i for i in range(input_col)]
random.shuffle(initial_center_col_num)
initial_center_col_num = initial_center_col_num[:center_num]
# 当前的聚类中心
present_center = []
for i in range(center_num):
present_center.append(input_signal_cp[initial_center_row_num[i], initial_center_row_num[i]])
pixls_labels = classifer(input_signal_cp, present_center)
num = 0 # 用于记录迭代次数
while True:
pre_centet = present_center.copy() # 储存前一次的聚类中心
# 计算当前聚类中心
for n in range(center_num):
temp = np.where(pixls_labels == n)
present_center[n] = sum(input_signal_cp[temp].astype(int)) / len(input_signal_cp[temp])
# 根据当前聚类中心分类
pixls_labels = classifer(input_signal_cp, present_center)
# 计算上一次聚类中心与当前聚类中心的差异
loss = loss_function(present_center, pre_centet)
num = num 1
print("Step:" str(num) " Loss:" str(loss))
# 当损失小于迭代阈值时,结束迭代
if loss <= threshold:
break
return pixls_labels