嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元微信扫码支付:2 元
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
基于深度学习开发的自主避障算法
def trainModel(train_data_generator, val_data_generator, model, initial_epoch):
"""
Model training.
# Arguments
train_data_generator: Training data generated batch by batch.
val_data_generator: Validation data generated batch by batch.
model: Target image channels.
initial_epoch: Dimension of model output.
"""
# Initialize loss weights
model.alpha = tf.Variable(1, trainable=False, name='alpha', dtype=tf.float32)
model.beta = tf.Variable(0, trainable=False, name='beta', dtype=tf.float32)
# Initialize number of samples for hard-mining
model.k_mse = tf.Variable(FLAGS.batch_size, trainable=False, name='k_mse', dtype=tf.int32)
model.k_entropy = tf.Variable(FLAGS.batch_size, trainable=False, name='k_entropy', dtype=tf.int32)
optimizer = optimizers.Adam(decay=1e-5)
# Configure training process
model.compile(loss=[utils.hard_mining_mse(model.k_mse),
utils.hard_mining_entropy(model.k_entropy)],
optimizer=optimizer, loss_weights=[model.alpha, model.beta])
# Save model with the lowest validation loss
weights_path = os.path.join(FLAGS.experiment_rootdir, 'weights_{epoch:03d}.h5')
writeBestModel = ModelCheckpoint(filepath=weights_path, monitor='val_loss',
save_best_only=True, save_weights_only=True)
# Save model every 'log_rate' epochs.
# Save training and validation losses.
logz.configure_output_dir(FLAGS.experiment_rootdir)
saveModelAndLoss = log_utils.MyCallback(filepath=FLAGS.experiment_rootdir,
period=FLAGS.log_rate,
batch_size=FLAGS.batch_size)
# Train model
steps_per_epoch = int(np.ceil(train_data_generator.samples / FLAGS.batch_size))
validation_steps = int(np.ceil(val_data_generator.samples / FLAGS.batch_size))
model.fit_generator(train_data_generator,
epochs=FLAGS.epochs, steps_per_epoch = steps_per_epoch,
callbacks=[writeBestModel, saveModelAndLoss],
validation_data=val_data_generator,
validation_steps = validation_steps,
initial_epoch=initial_epoch)