基本信息
源码名称:resnet-pytorch
源码大小:0.02M
文件格式:.py
开发语言:Python
更新时间:2020-03-27
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # PyTorch implementation of Dilated Residual Network def conv3x3(planes): ''' 3x3 convolution ''' return nn.Conv2d(planes, planes, kernel_size=(3,3), padding=(1,1), bias=False) class ResBasicBlock(nn.Module): ''' basic Conv2D Block for ResNet ''' def __init__(self, planes): super(ResBasicBlock, self).__init__() self.bn1 = nn.BatchNorm2d(planes) self.re1 = nn.ReLU(inplace=True) self.cnn1 = conv3x3(planes) self.bn2 = nn.BatchNorm2d(planes) self.re2 = nn.ReLU(inplace=True) self.cnn2 = conv3x3(planes) def forward(self, x): residual = x x = self.cnn2(self.re2(self.bn2(self.cnn1(self.re1(self.bn1(x)))))) x = residual return x class SpoofSmallResNet256_400(nn.Module): ''' small ResNet for 256 by 400 feature map (same NN as SpoofSmallResNet257_400) ''' def __init__(self, num_classes, binary=False, resnet_blocks=1, input_size=(1,256,400)): super(SpoofSmallResNet256_400, self).__init__() self.binary = binary self.expansion = nn.Conv2d(1, 8, kernel_size=(3,3), padding=(1,1)) ## block 1 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(8)) self.block1 = nn.Sequential(*layers) self.mp1 = nn.MaxPool2d(kernel_size=(2,2)) self.cnn1 = nn.Conv2d(8, 16, kernel_size=(3,3), dilation=(2,2)) ## block 2 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(16)) self.block2 = nn.Sequential(*layers) self.mp2 = nn.MaxPool2d(kernel_size=(2,2)) self.cnn2 = nn.Conv2d(16, 32, kernel_size=(3,3), dilation=(4,4)) ## block 3 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block3 = nn.Sequential(*layers) self.mp3 = nn.MaxPool2d(kernel_size=(2,2)) self.cnn3 = nn.Conv2d(32, 64, kernel_size=(3,3), dilation=(4,4)) ## block 4 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(64)) self.block4 = nn.Sequential(*layers) self.mp4 = nn.MaxPool2d(kernel_size=(1,2)) self.cnn4 = nn.Conv2d(64, 64, kernel_size=(3,3), dilation=(8,8)) self.flat_feats = 64*3*2 self.fc = nn.Linear(self.flat_feats, 100) self.bn = nn.BatchNorm1d(100) self.re = nn.ReLU(inplace=True) self.fc_out = nn.Linear(100, num_classes) ## Weights initialization for m in self.modules(): if isinstance(m, nn.Conv2d or nn.Linear): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d or nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.expansion(x) ## block 1 x = self.cnn1(self.mp1(self.block1(x))) #print(x.size()) ## block 2 x = self.cnn2(self.mp2(self.block2(x))) #print(x.size()) ## block 3 x = self.cnn3(self.mp3(self.block3(x))) #print(x.size()) ## block 4 x = self.cnn4(self.mp4(self.block4(x))) #print(x.size()) ## FC x = self.fc_out(self.re(self.bn(self.fc(x.view(-1, self.flat_feats))))) #print(x.size()) if self.binary: return x else: return F.log_softmax(x, dim=-1) # take log-softmax over C classes class SpoofSmallResNet257_400(nn.Module): ''' small ResNet (less GPU memory) for 257 by 400 feature map ''' def __init__(self, num_classes, resnet_blocks=1, focal_loss=False, input_size=(1,257,400)): super(SpoofSmallResNet257_400, self).__init__() self.focal_loss = focal_loss self.expansion = nn.Conv2d(1, 8, kernel_size=(3,3), padding=(1,1)) ## block 1 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(8)) self.block1 = nn.Sequential(*layers) self.mp1 = nn.MaxPool2d(kernel_size=(2,2)) self.cnn1 = nn.Conv2d(8, 16, kernel_size=(3,3), dilation=(2,2)) ## block 2 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(16)) self.block2 = nn.Sequential(*layers) self.mp2 = nn.MaxPool2d(kernel_size=(2,2)) self.cnn2 = nn.Conv2d(16, 32, kernel_size=(3,3), dilation=(4,4)) ## block 3 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block3 = nn.Sequential(*layers) self.mp3 = nn.MaxPool2d(kernel_size=(2,2)) self.cnn3 = nn.Conv2d(32, 64, kernel_size=(3,3), dilation=(4,4)) ## block 4 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(64)) self.block4 = nn.Sequential(*layers) self.mp4 = nn.MaxPool2d(kernel_size=(1,2)) self.cnn4 = nn.Conv2d(64, 64, kernel_size=(3,3), dilation=(8,8)) self.flat_feats = 64*3*2 self.fc = nn.Linear(self.flat_feats, 100) self.bn = nn.BatchNorm1d(100) self.re = nn.ReLU(inplace=True) self.fc_out = nn.Linear(100, num_classes) ## Weights initialization for m in self.modules(): if isinstance(m, nn.Conv2d or nn.Linear): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d or nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.expansion(x) ## block 1 x = self.cnn1(self.mp1(self.block1(x))) #print(x.size()) ## block 2 x = self.cnn2(self.mp2(self.block2(x))) #print(x.size()) ## block 3 x = self.cnn3(self.mp3(self.block3(x))) #print(x.size()) ## block 4 x = self.cnn4(self.mp4(self.block4(x))) #print(x.size()) ## FC x = self.fc_out(self.re(self.bn(self.fc(x.view(-1, self.flat_feats))))) #print(x.size()) if self.focal_loss: return x else: return F.log_softmax(x, dim=-1) # take log-softmax over C classes class SpoofResNet30_400(nn.Module): ''' primative ResNet for 30 by 400 feature map ''' def __init__(self, num_classes, resnet_blocks=1, input_size=(1,30,400)): super(SpoofResNet30_400, self).__init__() self.expansion = nn.Conv2d(1, 16, kernel_size=(3,3), padding=(1,1)) ## block 1 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(16)) self.block1 = nn.Sequential(*layers) self.mp1 = nn.MaxPool2d(kernel_size=(1,1)) self.cnn1 = nn.Conv2d(16, 32, kernel_size=(3,3), dilation=(1,2)) ## block 2 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block2 = nn.Sequential(*layers) self.mp2 = nn.MaxPool2d(kernel_size=(1,1)) self.cnn2 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(2,4)) ## block 3 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block3 = nn.Sequential(*layers) self.mp3 = nn.MaxPool2d(kernel_size=(1,2)) self.cnn3 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(2,4)) ## block 4 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block4 = nn.Sequential(*layers) self.mp4 = nn.MaxPool2d(kernel_size=(1,2)) self.cnn4 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(4,8)) ## block 5 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block5 = nn.Sequential(*layers) self.mp5 = nn.MaxPool2d(kernel_size=(1,4)) self.cnn5 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(4,8)) self.flat_feats = 32*4*3 self.fc = nn.Linear(self.flat_feats, 100) self.bn = nn.BatchNorm1d(100) self.re = nn.ReLU(inplace=True) self.fc_out = nn.Linear(100, num_classes) ## Weights initialization for m in self.modules(): if isinstance(m, nn.Conv2d or nn.Linear): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d or nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.expansion(x) ## block 1 x = self.cnn1(self.mp1(self.block1(x))) #print(x.size()) ## block 2 x = self.cnn2(self.mp2(self.block2(x))) #print(x.size()) ## block 3 x = self.cnn3(self.mp3(self.block3(x))) #print(x.size()) ## block 4 x = self.cnn4(self.mp4(self.block4(x))) #print(x.size()) ## block 5 x = self.cnn5(self.mp5(self.block5(x))) #print(x.size()) ## FC x = self.fc_out(self.re(self.bn(self.fc(x.view(-1, self.flat_feats))))) #print(x.size()) return F.log_softmax(x, dim=-1) # take log-softmax over C classes def predict(self, x): raise NotImplementedError() class SpoofResNet257_500(nn.Module): ''' primiative ResNet for feature map 257 by 500 ''' def __init__(self, num_classes, resnet_blocks=1, input_size=(1,257,500)): super(SpoofResNet257_500, self).__init__() self.expansion = nn.Conv2d(1, 16, kernel_size=(3,3), padding=(1,1)) ## block 1 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(16)) self.block1 = nn.Sequential(*layers) self.mp1 = nn.MaxPool2d(kernel_size=(1,1)) self.cnn1 = nn.Conv2d(16, 32, kernel_size=(3,3), dilation=(2,2)) ## block 2 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block2 = nn.Sequential(*layers) self.mp2 = nn.MaxPool2d(kernel_size=(1,1)) self.cnn2 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(4,4)) ## block 3 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block3 = nn.Sequential(*layers) self.mp3 = nn.MaxPool2d(kernel_size=(2,2)) self.cnn3 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(4,4)) ## block 4 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block4 = nn.Sequential(*layers) self.mp4 = nn.MaxPool2d(kernel_size=(2,2)) self.cnn4 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(8,8)) ## block 5 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block5 = nn.Sequential(*layers) self.mp5 = nn.MaxPool2d(kernel_size=(2,4)) self.cnn5 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(8,11)) # change dilation rate from (8,8) to (8,11) self.flat_feats = 32*4*3 self.fc = nn.Linear(self.flat_feats, 100) self.bn = nn.BatchNorm1d(100) self.re = nn.ReLU(inplace=True) self.fc_out = nn.Linear(100, num_classes) ## Weights initialization for m in self.modules(): if isinstance(m, nn.Conv2d or nn.Linear): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d or nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): ##print(x.size()) x = self.expansion(x) ## block 1 x = self.cnn1(self.mp1(self.block1(x))) ##print(x.size()) ## block 2 x = self.cnn2(self.mp2(self.block2(x))) ##print(x.size()) ## block 3 x = self.cnn3(self.mp3(self.block3(x))) ##print(x.size()) ## block 4 x = self.cnn4(self.mp4(self.block4(x))) ##print(x.size()) ## block 5 x = self.cnn5(self.mp5(self.block5(x))) ##print(x.size()) ## FC x = self.fc_out(self.re(self.bn(self.fc(x.view(-1, self.flat_feats))))) ##print(x.size()) return F.log_softmax(x, dim=-1) # take log-softmax over C classes def predict(self, x): raise NotImplementedError() class SpoofResNet257_400(nn.Module): ''' primative ResNet for 257 by 400 feature map ''' def __init__(self, num_classes, resnet_blocks=1, input_size=(1,257,400)): super(SpoofResNet257_400, self).__init__() self.expansion = nn.Conv2d(1, 16, kernel_size=(3,3), padding=(1,1)) ## block 1 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(16)) self.block1 = nn.Sequential(*layers) self.mp1 = nn.MaxPool2d(kernel_size=(1,1)) self.cnn1 = nn.Conv2d(16, 32, kernel_size=(3,3), dilation=(2,2)) ## block 2 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block2 = nn.Sequential(*layers) self.mp2 = nn.MaxPool2d(kernel_size=(1,1)) self.cnn2 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(4,4)) ## block 3 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block3 = nn.Sequential(*layers) self.mp3 = nn.MaxPool2d(kernel_size=(2,2)) self.cnn3 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(4,4)) ## block 4 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block4 = nn.Sequential(*layers) self.mp4 = nn.MaxPool2d(kernel_size=(2,2)) self.cnn4 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(8,8)) ## block 5 layers = [] for i in range(resnet_blocks): layers.append(ResBasicBlock(32)) self.block5 = nn.Sequential(*layers) self.mp5 = nn.MaxPool2d(kernel_size=(2,4)) self.cnn5 = nn.Conv2d(32, 32, kernel_size=(3,3), dilation=(8,8)) self.flat_feats = 32*4*3 self.fc = nn.Linear(self.flat_feats, 100) self.bn = nn.BatchNorm1d(100) self.re = nn.ReLU(inplace=True) self.fc_out = nn.Linear(100, num_classes) ## Weights initialization for m in self.modules(): if isinstance(m, nn.Conv2d or nn.Linear): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d or nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.expansion(x) ## block 1 x = self.cnn1(self.mp1(self.block1(x))) ##print(x.size()) ## block 2 x = self.cnn2(self.mp2(self.block2(x))) ##print(x.size()) ## block 3 x = self.cnn3(self.mp3(self.block3(x))) ##print(x.size()) ## block 4 x = self.cnn4(self.mp4(self.block4(x))) ##print(x.size()) ## block 5 x = self.cnn5(self.mp5(self.block5(x))) ##print(x.size()) ## FC x = self.fc_out(self.re(self.bn(self.fc(x.view(-1, self.flat_feats))))) ##print(x.size()) return F.log_softmax(x, dim=-1) # take log-softmax over C classes def predict(self, x): raise NotImplementedError()