基本信息
源码名称:SSD: Single Shot MultiBox Object Detector, in PyTorch
源码大小:3.83M
文件格式:.zip
开发语言:Python
更新时间:2020-02-02
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
from __future__ import print_function import torch from torch.autograd import Variable import cv2 import time from imutils.video import FPS, WebcamVideoStream import argparse parser = argparse.ArgumentParser(description='Single Shot MultiBox Detection') parser.add_argument('--weights', default='weights/ssd_300_VOC0712.pth', type=str, help='Trained state_dict file path') parser.add_argument('--cuda', default=False, type=bool, help='Use cuda in live demo') args = parser.parse_args() COLORS = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] FONT = cv2.FONT_HERSHEY_SIMPLEX def cv2_demo(net, transform): def predict(frame): height, width = frame.shape[:2] x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) y = net(x) # forward pass detections = y.data # scale each detection back up to the image scale = torch.Tensor([width, height, width, height]) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= 0.6: pt = (detections[0, i, j, 1:] * scale).cpu().numpy() cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), COLORS[i % 3], 2) cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), FONT, 2, (255, 255, 255), 2, cv2.LINE_AA) j = 1 return frame # start video stream thread, allow buffer to fill print("[INFO] starting threaded video stream...") stream = WebcamVideoStream(src=0).start() # default camera time.sleep(1.0) # start fps timer # loop over frames from the video file stream while True: # grab next frame frame = stream.read() key = cv2.waitKey(1) & 0xFF # update FPS counter fps.update() frame = predict(frame) # keybindings for display if key == ord('p'): # pause while True: key2 = cv2.waitKey(1) or 0xff cv2.imshow('frame', frame) if key2 == ord('p'): # resume break cv2.imshow('frame', frame) if key == 27: # exit break if __name__ == '__main__': import sys from os import path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) from data import BaseTransform, VOC_CLASSES as labelmap from ssd import build_ssd net = build_ssd('test', 300, 21) # initialize SSD net.load_state_dict(torch.load(args.weights)) transform = BaseTransform(net.size, (104/256.0, 117/256.0, 123/256.0)) fps = FPS().start() cv2_demo(net.eval(), transform) # stop the timer and display FPS information fps.stop() print("[INFO] elasped time: {:.2f}".format(fps.elapsed())) print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) # cleanup cv2.destroyAllWindows() stream.stop()