基本信息
源码名称:openmv目标检测代码
源码大小:3.08KB
文件格式:.py
开发语言:Python
更新时间:2019-11-26
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):78630559
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
openmv目标检测代码
openmv目标检测代码
class GeometryFeature:
def __init__(self, img):
self.img = img
@staticmethod
def trans_line_format(line):
'''
将原来由两点坐标确定的直线,转换为 y = ax b 的格式
'''
x1 = line.x1()
y1 = line.y1()
x2 = line.x2()
y2 = line.y2()
if x1 == x2:
# 避免完全垂直,x坐标相等的情况
x1 = 0.1
# 计算斜率 a
a = (y2 - y1) / (x2 - x1)
# 计算常数项 b
# y = a*x b -> b = y - a*x
b = y1 - a * x1
return a,b
@staticmethod
def calculate_angle(line1, line2):
'''
利用四边形的角公式, 计算出直线夹角
'''
angle = (180 - abs(line1.theta() - line2.theta()))
if angle > 90:
angle = 180 - angle
return angle
@staticmethod
def find_verticle_lines(lines, angle_threshold=(70, 90)):
'''
寻找相互垂直的两条线
'''
return GeometryFeature.find_interserct_lines(lines, angle_threshold=angle_threshold)
@staticmethod
def find_interserct_lines(lines, angle_threshold=(10,90), window_size=None):
'''
根据夹角阈值寻找两个相互交叉的直线, 且交点需要存在于画面中
'''
line_num = len(lines)
for i in range(line_num -1):
for j in range(i, line_num):
# 判断两个直线之间的夹角是否为直角
angle = GeometryFeature.calculate_angle(lines[i], lines[j])
# 判断角度是否在阈值范围内
if not(angle >= angle_threshold[0] and angle <= angle_threshold[1]):
continue
# 判断交点是否在画面内
if window_size is not None:
# 获取串口的尺寸 宽度跟高度
win_width, win_height = window_size
# 获取直线交点
intersect_pt = GeometryFeature.calculate_intersection(lines[i], lines[j])
if intersect_pt is None:
# 没有交点
continue
x, y = intersect_pt
if not(x >= 0 and x < win_width and y >= 0 and y < win_height):
# 交点如果没有在画面中
continue
return (lines[i], lines[j])
return None
@staticmethod
def calculate_intersection(line1, line2):
'''
计算两条线的交点
'''
a1 = line1.y2() - line1.y1()
b1 = line1.x1() - line1.x2()
c1 = line1.x2()*line1.y1() - line1.x1()*line1.y2()
a2 = line2.y2() - line2.y1()
b2 = line2.x1() - line2.x2()
c2 = line2.x2() * line2.y1() - line2.x1()*line2.y2()
if (a1 * b2 - a2 * b1) != 0 and (a2 * b1 - a1 * b2) != 0:
cross_x = int((b1*c2-b2*c1)/(a1*b2-a2*b1))
cross_y = int((c1*a2-c2*a1)/(a1*b2-a2*b1))
return (cross_x, cross_y)
return None