基本信息
源码名称:openmv目标检测代码
源码大小:3.08KB
文件格式:.py
开发语言:Python
更新时间:2019-11-26
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
openmv目标检测代码
openmv目标检测代码
class GeometryFeature: def __init__(self, img): self.img = img @staticmethod def trans_line_format(line): ''' 将原来由两点坐标确定的直线,转换为 y = ax b 的格式 ''' x1 = line.x1() y1 = line.y1() x2 = line.x2() y2 = line.y2() if x1 == x2: # 避免完全垂直,x坐标相等的情况 x1 = 0.1 # 计算斜率 a a = (y2 - y1) / (x2 - x1) # 计算常数项 b # y = a*x b -> b = y - a*x b = y1 - a * x1 return a,b @staticmethod def calculate_angle(line1, line2): ''' 利用四边形的角公式, 计算出直线夹角 ''' angle = (180 - abs(line1.theta() - line2.theta())) if angle > 90: angle = 180 - angle return angle @staticmethod def find_verticle_lines(lines, angle_threshold=(70, 90)): ''' 寻找相互垂直的两条线 ''' return GeometryFeature.find_interserct_lines(lines, angle_threshold=angle_threshold) @staticmethod def find_interserct_lines(lines, angle_threshold=(10,90), window_size=None): ''' 根据夹角阈值寻找两个相互交叉的直线, 且交点需要存在于画面中 ''' line_num = len(lines) for i in range(line_num -1): for j in range(i, line_num): # 判断两个直线之间的夹角是否为直角 angle = GeometryFeature.calculate_angle(lines[i], lines[j]) # 判断角度是否在阈值范围内 if not(angle >= angle_threshold[0] and angle <= angle_threshold[1]): continue # 判断交点是否在画面内 if window_size is not None: # 获取串口的尺寸 宽度跟高度 win_width, win_height = window_size # 获取直线交点 intersect_pt = GeometryFeature.calculate_intersection(lines[i], lines[j]) if intersect_pt is None: # 没有交点 continue x, y = intersect_pt if not(x >= 0 and x < win_width and y >= 0 and y < win_height): # 交点如果没有在画面中 continue return (lines[i], lines[j]) return None @staticmethod def calculate_intersection(line1, line2): ''' 计算两条线的交点 ''' a1 = line1.y2() - line1.y1() b1 = line1.x1() - line1.x2() c1 = line1.x2()*line1.y1() - line1.x1()*line1.y2() a2 = line2.y2() - line2.y1() b2 = line2.x1() - line2.x2() c2 = line2.x2() * line2.y1() - line2.x1()*line2.y2() if (a1 * b2 - a2 * b1) != 0 and (a2 * b1 - a1 * b2) != 0: cross_x = int((b1*c2-b2*c1)/(a1*b2-a2*b1)) cross_y = int((c1*a2-c2*a1)/(a1*b2-a2*b1)) return (cross_x, cross_y) return None