基本信息
源码名称:python遗传算法(入门级示例)
源码大小:8.32KB
文件格式:.py
开发语言:Python
更新时间:2019-04-30
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):78630559
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
遗传算法
遗传算法
import numpy as np
from scipy.optimize import fsolve, basinhopping
import random
import timeit
# 根据解的精度确定染色体(chromosome)的长度
# 需要根据决策变量的上下边界来确定
def getEncodedLength(delta=0.0001, boundarylist=[]):
# 每个变量的编码长度
lengths = []
for i in boundarylist:
lower = i[0]
upper = i[1]
# lamnda 代表匿名函数f(x)=0,50代表搜索的初始解
res = fsolve(lambda x: ((upper - lower) * 1 / delta) - 2 ** x - 1, 50)
length = int(np.floor(res[0]))
lengths.append(length)
return lengths
pass
# 随机生成初始编码种群
def getIntialPopulation(encodelength, populationSize):
# 随机化初始种群为0
chromosomes = np.zeros((populationSize, sum(encodelength)), dtype=np.uint8)
for i in range(populationSize):
chromosomes[i, :] = np.random.randint(0, 2, sum(encodelength))
# print('chromosomes shape:', chromosomes.shape)
return chromosomes
# 染色体解码得到表现型的解
def decodedChromosome(encodelength, chromosomes, boundarylist, delta=0.0001):
populations = chromosomes.shape[0]
variables = len(encodelength)
decodedvalues = np.zeros((populations, variables))
for k, chromosome in enumerate(chromosomes):
chromosome = chromosome.tolist()
start = 0
for index, length in enumerate(encodelength):
# 将一个染色体进行拆分,得到染色体片段
power = length - 1
# 解码得到的10进制数字
demical = 0
for i in range(start, length start):
demical = chromosome[i] * (2 ** power)
power -= 1
lower = boundarylist[index][0]
upper = boundarylist[index][1]
decodedvalue = lower demical * (upper - lower) / (2 ** length - 1)
decodedvalues[k, index] = decodedvalue
# 开始去下一段染色体的编码
start = length
return decodedvalues
# 得到个体的适应度值及每个个体被选择的累积概率
def getFitnessValue(func, chromosomesdecoded):
# 得到种群规模和决策变量的个数
population, nums = chromosomesdecoded.shape
# 初始化种群的适应度值为0
fitnessvalues = np.zeros((population, 1))
# 计算适应度值
for i in range(population):
fitnessvalues[i, 0] = func(chromosomesdecoded[i, :])
# 计算每个染色体被选择的概率
probability = fitnessvalues / np.sum(fitnessvalues)
# 得到每个染色体被选中的累积概率
cum_probability = np.cumsum(probability)
return fitnessvalues, cum_probability
# 新种群选择
def selectNewPopulation(chromosomes, cum_probability):
m, n = chromosomes.shape
newpopulation = np.zeros((m, n), dtype=np.uint8)
# 随机产生M个概率值
randoms = np.random.rand(m)
for i, randoma in enumerate(randoms):
logical = cum_probability >= randoma
index = np.where(logical == 1)
# index是tuple,tuple中元素是ndarray
newpopulation[i, :] = chromosomes[index[0][0], :]
return newpopulation
pass
# 新种群交叉
def crossover(population, Pc=0.8):
"""
:param population: 新种群
:param Pc: 交叉概率默认是0.8
:return: 交叉后得到的新种群
"""
# 根据交叉概率计算需要进行交叉的个体个数
m, n = population.shape
numbers = np.uint8(m * Pc)
# 确保进行交叉的染色体个数是偶数个
if numbers % 2 != 0:
numbers = 1
# 交叉后得到的新种群
updatepopulation = np.zeros((m, n), dtype=np.uint8)
# 产生随机索引
index = random.sample(range(m), numbers)
# 不进行交叉的染色体进行复制
for i in range(m):
if not index.__contains__(i):
updatepopulation[i, :] = population[i, :]
# crossover
while len(index) > 0:
a = index.pop()
b = index.pop()
# 随机产生一个交叉点
crossoverPoint = random.sample(range(1, n), 1)
crossoverPoint = crossoverPoint[0]
# one-single-point crossover
updatepopulation[a, 0:crossoverPoint] = population[a, 0:crossoverPoint]
updatepopulation[a, crossoverPoint:] = population[b, crossoverPoint:]
updatepopulation[b, 0:crossoverPoint] = population[b, 0:crossoverPoint]
updatepopulation[b, crossoverPoint:] = population[a, crossoverPoint:]
return updatepopulation
pass
# 染色体变异
def mutation(population, Pm=0.01):
"""
:param population: 经交叉后得到的种群
:param Pm: 变异概率默认是0.01
:return: 经变异操作后的新种群
"""
updatepopulation = np.copy(population)
m, n = population.shape
# 计算需要变异的基因个数
gene_num = np.uint8(m * n * Pm)
# 将所有的基因按照序号进行10进制编码,则共有m*n个基因
# 随机抽取gene_num个基因进行基本位变异
mutationGeneIndex = random.sample(range(0, m * n), gene_num)
# 确定每个将要变异的基因在整个染色体中的基因座(即基因的具体位置)
for gene in mutationGeneIndex:
# 确定变异基因位于第几个染色体
chromosomeIndex = gene // n
# 确定变异基因位于当前染色体的第几个基因位
geneIndex = gene % n
# mutation
if updatepopulation[chromosomeIndex, geneIndex] == 0:
updatepopulation[chromosomeIndex, geneIndex] = 1
else:
updatepopulation[chromosomeIndex, geneIndex] = 0
return updatepopulation
pass
# 定义适应度函数 目标函数
# maxf(x1,x2) = 21.5 x1*sin(4*pi*x1) x2*sin(20*pi*x2)
# s.t. -3.0<=x1<=12.1 4.1<=x2<=5.8
def fitnessFunction():
return lambda x: 21.5 x[0] * np.sin(4 * np.pi * x[0]) x[1] * np.sin(20 * np.pi * x[1])
pass
def main(max_iter=500):
# 每次迭代得到的最优解
optimalSolutions = []
optimalValues = []
# 决策变量的取值范围
decisionVariables = [[-3.0, 12.1], [4.1, 5.8]]
# 得到染色体编码长度
lengthEncode = getEncodedLength(boundarylist=decisionVariables)
for iteration in range(max_iter):
# 得到初始种群编码
chromosomesEncoded = getIntialPopulation(lengthEncode, 10)
# 种群解码
decoded = decodedChromosome(lengthEncode, chromosomesEncoded, decisionVariables)
# 得到个体适应度值和个体的累积概率
evalvalues, cum_proba = getFitnessValue(fitnessFunction(), decoded)
# 选择新的种群
newpopulations = selectNewPopulation(chromosomesEncoded, cum_proba)
# 进行交叉操作
crossoverpopulation = crossover(newpopulations)
# mutation
mutationpopulation = mutation(crossoverpopulation)
# 将变异后的种群解码,得到每轮迭代最终的种群
final_decoded = decodedChromosome(lengthEncode, mutationpopulation, decisionVariables)
# 适应度评价
fitnessvalues, cum_individual_proba = getFitnessValue(fitnessFunction(), final_decoded)
# 搜索每次迭代的最优解,以及最优解对应的目标函数的取值
optimalValues.append(np.max(list(fitnessvalues)))
index = np.where(fitnessvalues == max(list(fitnessvalues)))
optimalSolutions.append(final_decoded[index[0][0], :])
# 搜索最优解
optimalValue = np.max(optimalValues)
optimalIndex = np.where(optimalValues == optimalValue)
optimalSolution = optimalSolutions[optimalIndex[0][0]]
return optimalSolution, optimalValue
solution, value = main()
print('最优解: x1, x2')
print(solution[0], solution[1])
print('最优目标函数值:', value)
# 测量运行时间
elapsedtime = timeit.timeit(stmt=main, number=1)
print('Searching Time Elapsed:(S)', elapsedtime)