基本信息
源码名称:python MNIST分类 示例源码(tensorflow)
源码大小:1.88KB
文件格式:.py
开发语言:Python
更新时间:2018-03-07
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
##number 1 to 10
mnist = input_data.read_data_sets("MNIST_data",one_hot = True)
def add_layer(input, in_size, out_size, activation_function = None):
Wights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size]) 0.1)
Wx_plus_b = tf.matmul(input,Wights) biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
def compute_accuracy(v_xs,v_ys):##估计准确度
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs})##预测值
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accurary = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accurary,feed_dict={xs:v_xs,ys:v_ys})
return result
##define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784])###28*28 784个像素点
ys = tf.placeholder(tf.float32,[None,10])
##add output layer
prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax)
##the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),
reduction_indices=[1]))##loss
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.Session()
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)##每次提取100个数据
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50 == 0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))