基本信息
源码名称:python 画图(matplotlib)时空图
源码大小:1.46KB
文件格式:.py
开发语言:Python
更新时间:2018-02-03
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
# -*- coding: utf-8 -*- """ Created on Fri Jan 19 17:35:17 2018 @author: administrator """ import matplotlib.pyplot as plt from matplotlib.colors import BoundaryNorm from matplotlib.ticker import MaxNLocator import numpy as np # make these smaller to increase the resolution dx, dy = 0.05, 0.05 # generate 2 2d grids for the x & y bounds y, x = np.mgrid[slice(1, 5 dy, dy), slice(1, 5 dx, dx)] z = np.sin(x)**10 np.cos(10 y*x) * np.cos(x) # x and y are bounds, so z should be the value *inside* those bounds. # Therefore, remove the last value from the z array. z = z[:-1, :-1] levels = MaxNLocator(nbins=15).tick_values(z.min(), z.max()) # pick the desired colormap, sensible levels, and define a normalization # instance which takes data values and translates those into levels. cmap = plt.get_cmap('PiYG') norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) fig, (ax0, ax1) = plt.subplots(nrows=2) im = ax0.pcolormesh(x, y, z, cmap=cmap, norm=norm) fig.colorbar(im, ax=ax0) ax0.set_title('pcolormesh with levels') # contours are *point* based plots, so convert our bound into point # centers cf = ax1.contourf(x[:-1, :-1] dx/2., y[:-1, :-1] dy/2., z, levels=levels, cmap=cmap) fig.colorbar(cf, ax=ax1) ax1.set_title('contourf with levels') # adjust spacing between subplots so `ax1` title and `ax0` tick labels # don't overlap fig.tight_layout() plt.show()