基本信息
源码名称:C语言实现完整的指纹识别流程.iso
源码大小:512.15M
文件格式:.iso
开发语言:C/C++
更新时间:2020-06-12
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 15 元×
微信扫码支付:15 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
C语言实现完整的指纹识别流程,均衡,正则,增强,高斯滤波,二值化,细化,特征点提取匹配
{
int x, y;
BYTE *lpSrc;
BYTE *lpRst;
int sum;
int SiteD8[8] = {IMGW-1, IMGW, IMGW 1, 1, -IMGW 1, -IMGW, -IMGW-1, -1};
// 边缘部分
for(y = 0; y < IMGH; y =2)
{
lpSrc = g_lpOrgFinger y*IMGW;
lpRst = g_lpTemp (y/2)*(IMGW/2);
*lpRst = *lpSrc;
lpSrc = g_lpOrgFinger y*IMGW IMGW - 1;
lpRst = g_lpTemp (y/2)*(IMGW/2) (IMGW/2 - 1);
*lpRst = *lpSrc;
}
for(x = 0; x < IMGW; x =2)
{
lpSrc = g_lpOrgFinger x;
lpRst = g_lpTemp x/2;
*lpRst = *lpSrc;
lpSrc = g_lpOrgFinger (IMGH-1)*IMGW x;
lpRst = g_lpTemp (IMGH/2-1)*(IMGW/2) x/2;
*lpRst = *lpSrc;
}
// 非边缘部分用高斯模板提取低频信息
for(y = 2; y < IMGH-2; y =2)
{
for(x = 2; x < IMGW-2; x =2)
{
lpSrc = g_lpOrgFinger y*IMGW x;
lpRst = g_lpTemp (y/2)*(IMGW/2) x/2;
sum = *lpSrc*4 *(lpSrc SiteD8[0])
*(lpSrc SiteD8[1])*2 *(lpSrc SiteD8[2])
*(lpSrc SiteD8[3])*2 *(lpSrc SiteD8[4])
*(lpSrc SiteD8[5])*2 *(lpSrc SiteD8[6])
*(lpSrc SiteD8[7])*2;
sum = sum>>4;
*lpRst = (BYTE)sum;
}
}
}
void equalize(BYTE *lpDIBBits, BYTE *lpDataOut, int lWidth, int lHeight)
{
// 指向源图像的指针
BYTE* lpSrc;
BYTE* lpRst;
// 临时变量
int lTemp;
// 循环变量
int i;
int j;
// 灰度映射表
BYTE bMap[256];
// 灰度映射表
int lCount[256];
// 图像每行的字节数
int lLineBytes;
// 计算图像每行的字节数
//lLineBytes = WIDTHBYTES(lWidth * 8);
lLineBytes = lWidth;
// 重置计数为0
for (i = 0; i < 256; i )
{
// 清零
lCount[i] = 0;
}
// 计算各个灰度值的计数
for (i = 0; i < lHeight; i )
{
for (j = 0; j < lWidth; j )
{
lpSrc = (unsigned char *)lpDIBBits lLineBytes * i j;
// 计数加1
lCount[*(lpSrc)] ;
}
}
// 计算灰度映射表
for (i = 0; i < 256; i )
{
// 初始为0
lTemp = 0;
for (j = 0; j <= i ; j )
{
lTemp = lCount[j];
}
// 计算对应的新灰度值
bMap[i] = (BYTE) (lTemp * 255 / lHeight / lWidth);
}
// 每行
for(i = 0; i < lHeight; i )
{ // 每列
for(j = 0; j < lWidth; j )
{
// 指向DIB第i行,第j个像素的指针
lpSrc = (unsigned char*)lpDIBBits lLineBytes * (lHeight - 1 - i) j;
lpRst = (unsigned char*)lpDataOut lLineBytes * (lHeight - 1 - i) j;
// 计算新的灰度值
*lpRst = bMap[*lpRst];
}
}
// 返回
}
C语言实现完整的指纹识别流程,均衡,正则,增强,高斯滤波,二值化,细化,特征点提取匹配
C语言实现完整的指纹识别流程,下载ISO文件后用360压缩或者资源管理器直接打开解压就行
void zoomout(BYTE *g_lpOrgFinger, BYTE *g_lpTemp, int IMGW, int IMGH)
{
int x, y;
BYTE *lpSrc;
BYTE *lpRst;
int sum;
int SiteD8[8] = {IMGW-1, IMGW, IMGW 1, 1, -IMGW 1, -IMGW, -IMGW-1, -1};
// 边缘部分
for(y = 0; y < IMGH; y =2)
{
lpSrc = g_lpOrgFinger y*IMGW;
lpRst = g_lpTemp (y/2)*(IMGW/2);
*lpRst = *lpSrc;
lpSrc = g_lpOrgFinger y*IMGW IMGW - 1;
lpRst = g_lpTemp (y/2)*(IMGW/2) (IMGW/2 - 1);
*lpRst = *lpSrc;
}
for(x = 0; x < IMGW; x =2)
{
lpSrc = g_lpOrgFinger x;
lpRst = g_lpTemp x/2;
*lpRst = *lpSrc;
lpSrc = g_lpOrgFinger (IMGH-1)*IMGW x;
lpRst = g_lpTemp (IMGH/2-1)*(IMGW/2) x/2;
*lpRst = *lpSrc;
}
// 非边缘部分用高斯模板提取低频信息
for(y = 2; y < IMGH-2; y =2)
{
for(x = 2; x < IMGW-2; x =2)
{
lpSrc = g_lpOrgFinger y*IMGW x;
lpRst = g_lpTemp (y/2)*(IMGW/2) x/2;
sum = *lpSrc*4 *(lpSrc SiteD8[0])
*(lpSrc SiteD8[1])*2 *(lpSrc SiteD8[2])
*(lpSrc SiteD8[3])*2 *(lpSrc SiteD8[4])
*(lpSrc SiteD8[5])*2 *(lpSrc SiteD8[6])
*(lpSrc SiteD8[7])*2;
sum = sum>>4;
*lpRst = (BYTE)sum;
}
}
}
void equalize(BYTE *lpDIBBits, BYTE *lpDataOut, int lWidth, int lHeight)
{
// 指向源图像的指针
BYTE* lpSrc;
BYTE* lpRst;
// 临时变量
int lTemp;
// 循环变量
int i;
int j;
// 灰度映射表
BYTE bMap[256];
// 灰度映射表
int lCount[256];
// 图像每行的字节数
int lLineBytes;
// 计算图像每行的字节数
//lLineBytes = WIDTHBYTES(lWidth * 8);
lLineBytes = lWidth;
// 重置计数为0
for (i = 0; i < 256; i )
{
// 清零
lCount[i] = 0;
}
// 计算各个灰度值的计数
for (i = 0; i < lHeight; i )
{
for (j = 0; j < lWidth; j )
{
lpSrc = (unsigned char *)lpDIBBits lLineBytes * i j;
// 计数加1
lCount[*(lpSrc)] ;
}
}
// 计算灰度映射表
for (i = 0; i < 256; i )
{
// 初始为0
lTemp = 0;
for (j = 0; j <= i ; j )
{
lTemp = lCount[j];
}
// 计算对应的新灰度值
bMap[i] = (BYTE) (lTemp * 255 / lHeight / lWidth);
}
// 每行
for(i = 0; i < lHeight; i )
{ // 每列
for(j = 0; j < lWidth; j )
{
// 指向DIB第i行,第j个像素的指针
lpSrc = (unsigned char*)lpDIBBits lLineBytes * (lHeight - 1 - i) j;
lpRst = (unsigned char*)lpDataOut lLineBytes * (lHeight - 1 - i) j;
// 计算新的灰度值
*lpRst = bMap[*lpRst];
}
}
// 返回
}