基本信息
源码名称:opencv计算信息熵(c++代码)
源码大小:3.02KB
文件格式:.cpp
开发语言:C/C++
更新时间:2020-03-25
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 1 元×
微信扫码支付:1 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
// first.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include <opencv2/opencv.hpp> using namespace cv; double Entropy(Mat img); int _tmain(int argc, _TCHAR* argv[]) { String name = "chair_0022_Area01_001.png"; Mat src_color = imread("picture/1/" name);//读取原彩色图 /*int c = src_color.cols ; int r = src_color.rows ; int tt = src_color.channels();*/ Mat src_gray;//彩色图像转化成灰度图 cvtColor(src_color, src_gray, COLOR_BGR2GRAY); imwrite("picture/Gray/Gray_" name, src_gray);//保存图像文件 //Mat img = imread("gray.png"); double x = Entropy(src_color); std::cout << x << std::endl; std::cout << src_color.cols << std::endl; std::cout << src_color.rows << std::endl; std::cout << src_color.channels() << std::endl; double x1 = Entropy(src_gray); std::cout << x1 << std::endl; std::cout << src_gray.cols << std::endl; std::cout << src_gray.rows << std::endl; std::cout << src_gray.channels() << std::endl; system("pause"); return 0; } double Entropy(Mat img) { //将输入的矩阵为图像 double temp[256]; /*清零*/ for (int i = 0; i < 256; i ) { temp[i] = 0.0; } /*计算每个像素的累积值*/ for (int m = 0; m < img.rows; m ) { const uchar* t = img.ptr<uchar>(m); for (int n = 0; n < img.cols; n ) { int i = t[n]; temp[i] = temp[i] 1; } } /*计算每个像素的概率*/ for (int i = 0; i < 256; i ) { temp[i] = temp[i] / (img.rows*img.cols); } double result = 0; /*根据定义计算图像熵*/ for (int i = 0; i < 256; i ) { if (temp[i] == 0.0) result = result; else result = result - temp[i] * (log(temp[i]) / log(2.0)); } return result; } void calc_2D_entropy(cv::Mat &input, cv::Mat &output){ int height = input.rows; int width = input.cols; cv::Mat out = cv::Mat::zeros(height, width, CV_32FC1); //template size int w = 3; for (int i = w; i < height - w; i ) { float *data = out.ptr<float>(i); for (int j = w; j < width - w; j ) { //cv::Mat Hist = cv::Mat::zeros(1, 256, CV_32F); float Hist[256] = { 0 }; for (int p = i - w; p < i w 1; p ) { uchar *t = input.ptr<uchar>(p); for (int q = j - w; q < j w 1; q ) { int tmp = t[q]; //cout << "tmp:" << tmp << endl; Hist[tmp] = Hist[tmp] 1; } } float sumHist = 0; for (int ii = 0; ii < 256; ii ) { sumHist = Hist[ii]; } //get the probality for (int ii = 0; ii < 256; ii ) { Hist[ii] = Hist[ii] / sumHist; //if (Hist[ii] != 0) // cout << ii << ":" << Hist[ii] << endl; } //calculate the entropy for (int k = 0; k < 256; k ) { float v = Hist[k]; float z = data[j]; //cout << "z:" << z << endl; if (v != 0) { double H = v * (log(v) / (float)log(2.0)); //H = H * 80.5 - 1; data[j] = data[j] - H; //data[j] = data[j] v * log(1 / v); //cout << j << ":" << data[j] << endl; } } } } normalize(out, output); output = output * 255; }