基本信息
源码名称:c++ 布谷鸟算法
源码大小:0.88M
文件格式:.zip
开发语言:C/C++
更新时间:2020-03-17
   友情提示:(无需注册或充值,赞助后即可获取资源下载链接)

     嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300

本次赞助数额为: 2 元 
   源码介绍

#include "cuckoo.h"
// 初始化,读入参数什么的
#define set_Times 10

double sum_Iter;
double sum_fmin;
int function_num;
int counter_increase;
double saveFitness[set_Times];
int times;
FILE *fp;
double function_domian[8][2]={{-100.0,100.0},{-100.0,100.0},{-5.12,5.12},{-600.0,600.0},{-32,32},{-100.0,100.0},{-100.0,100.0},{-2*PI,2*PI}};

extern double myAbs(double); 



void initial()
{
	int i,j;

	//初始化上下界
	for(j=0;j<numOfVar;j  )
	{
		lower[j]=function_domian[function_num-1][0];//这里原来也搞错了,fuck!!!!!
		upper[j]=function_domian[function_num-1][1];
	}
	fmin=DBL_MAX;

	//初始化n个鸟巢
	for(i=0;i<n;  i)
	{
		for(j=0;j<numOfVar;j  )
		{
			population[i].x[j]=randval(lower[j],upper[j]);
		}
		population[i].fitness=function(population[i].x,numOfVar,function_num);
		if(population[i].fitness<fmin)
		{
			fmin=population[i].fitness;
			best=i;
			bestNest.fitness=population[i].fitness;
			for(j=0;j<numOfVar;  j)
				bestNest.x[j]=population[i].x[j];
		}
	}
}

//用简单的莱维飞行产生新的解
void get_cuckoos()
{
	double beta=1.5;
	double sigma=pow((gamma(1.0 beta)*sin(PI*beta/2.0))/gamma(((1.0 beta)/2.0)*beta*pow(2,(beta-1.0)/2.0)),1.0/beta);
	int i,j;
	double u,v,step,stepSize;
	for(i=0;i<n;  i)
	{
		for(j=0;j<numOfVar;  j)
		{
			u=gauss(0.0,1.0)*sigma;
			v=gauss(0.0,1.0);
			step=u/pow(myAbs(v),1.0/beta);
			stepSize=0.01*step*(population[i].x[j]-bestNest.x[j]);
			newPopulation[i].x[j]=population[i].x[j] stepSize*gauss(0,1.0);
			//满足定义域
			if(newPopulation[i].x[j]<lower[j])
				newPopulation[i].x[j]=lower[j];
			if(newPopulation[i].x[j]>upper[j])
				newPopulation[i].x[j]=upper[j];
		}
		newPopulation[i].fitness=function(newPopulation[i].x,numOfVar,function_num);
	}
}


void get_best_nest()
{
	int i,j;
	for(i=0;i<n;  i)
	{
		if(population[i].fitness>newPopulation[i].fitness)
		{
			population[i].fitness=newPopulation[i].fitness;
			for(j=0;j<numOfVar;  j)
				population[i].x[j]=newPopulation[i].x[j];
			if(population[i].fitness<fmin)
			{
				fmin=population[i].fitness;
				best=i;
				bestNest.fitness=population[i].fitness;
				for(j=0;j<numOfVar;  j)
					bestNest.x[j]=population[i].x[j];
			}
		}
	}
}

void empty_nest()
{
	int i,j;
	double pa_get,stepSize,sum=0,pa_allocation;

	for(i=0;i<n;  i)
		sum =population[i].fitness;

	for(i=0;i<n;  i)
	{
		pa_get=randval(0.0,1.0);
		pa_allocation=n*pa*population[i].fitness/sum;
		if(pa_get>=pa_allocation||best==i)
		{
			newPopulation[i]=population[i];
		}
		else
		{
			for(j=0;j<numOfVar;  j)
			{
				stepSize=(population[randN(0,n-1)].x[j]-population[randN(0,n-1)].x[j])*randval(0.0,1.0);
				newPopulation[i].x[j]=population[i].x[j] stepSize;
				if(newPopulation[i].x[j]<lower[j])
					newPopulation[i].x[j]=lower[j];
				if(newPopulation[i].x[j]>upper[j])
					newPopulation[i].x[j]=upper[j];
			}
			newPopulation[i].fitness=function(newPopulation[i].x,numOfVar,function_num);
		}
	}
}


int stop_criterion(int type,int *count)
{
	if(type==1)
		return fmin>tol?1:0;
	else if(type==2)
		return (*count)--;
	else
		return 0;
}

//函数主体
void cuckoo_search()
{
	
	int countIter=0;
	int count=counter_increase;
	srand(time(0)); 
	initial();
	while(stop_criterion(2,&count))
	{
		get_cuckoos();
		get_best_nest();
		empty_nest();
		get_best_nest();
		countIter  ;
	}
	printf("fmin_%d=%.16lf\n",set_Times-times-1,fmin);
	sum_fmin =fmin;
	saveFitness[set_Times-times-1]=fmin;//刚才这里出错,导致莫名其妙的错误
	sum_Iter =countIter;
}

void do_many_times()
{
	int i,j,k;
	double stdv,mean_fmin;
	if((fp=fopen("cuckoo_Original.xls","wt"))==NULL)
	{
		printf("can not open the file!");
		exit(0);
	}
	for(i=8;i<=8;  i)
	{
		function_num=i;

		printf("function %d\n",i);
		fprintf(fp,"function %d\n",i);
		fprintf(fp,"迭代次数\tmean_fmin\tstdv\n");
		for(j=1000;j<=9000;j =1000)
		{
			sum_fmin=0.0;
			sum_Iter=0.0;
			stdv=0.0;
			printf("iteration %d:\n",j);

			//fprintf(fp,"%d\t",j);

			counter_increase=j;
			times=set_Times;
			while(times--)
				cuckoo_search();
			printf("********sum_fmin=%lf**********\n",sum_fmin);
			mean_fmin=sum_fmin/(double)set_Times;
			printf("mean_fmin=%lf\n",mean_fmin);
			for(k=0;k<set_Times;  k)
				stdv =(saveFitness[k]-mean_fmin)*(saveFitness[k]-mean_fmin);
			stdv=sqrt(stdv/(double)set_Times);
			printf("平均迭代次数:%.16lf\n平均最小值:%.16lf\n方差:%.16lf\n",sum_Iter/(double)set_Times,mean_fmin,stdv);
			fprintf(fp,"%.16lf\t%.16lf\t%.16lf\n",sum_Iter/(double)set_Times,mean_fmin,stdv);
		}
	}
	fclose(fp);
}