基本信息
源码名称:svm分类算法示例源码(含实验报告)
源码大小:3.18M
文件格式:.zip
开发语言:C/C++
更新时间:2019-03-12
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
#include "svm.h" #include <iostream> #include <list> #include <iterator> #include <vector> #include <string> #include <ctime> using namespace std; svm_parameter param; svm_problem prob; svm_model *svmModel; list<svm_node*> xList; list<double> yList ; const int MAX=10; const int nTstTimes=10; vector<int> predictvalue; vector<int> realvalue; int trainNum=0; void setParam() // { param.svm_type = C_SVC; param.kernel_type = RBF; param.degree = 3; param.gamma = 0.5; param.coef0 = 0; param.nu = 0.5; param.cache_size = 40; param.C = 500; param.eps = 1e-3; param.p = 0.1; param.shrinking = 1; // param.probability = 0; param.nr_weight = 0; param.weight = NULL; param.weight_label =NULL; } void train(char *filePath) { FILE *fp; int k; int line=0; int temp; if((fp=fopen(filePath,"rt"))==NULL) return ; while(1) { svm_node* features = new svm_node[85 1]; for(k=0;k<85;k ) { fscanf(fp,"%d",&temp); features[k].index = k 1; features[k].value = temp/(MAX*1.0) ; } features[85].index = -1; fscanf(fp,"%d",&temp); xList.push_back(features); yList.push_back(temp); line ; trainNum=line; if(feof(fp)) break; } setParam(); prob.l=line; prob.x=new svm_node *[prob.l]; //对应的特征向量 prob.y = new double[prob.l]; //放的是值 int index=0; while(!xList.empty()) { prob.x[index]=xList.front(); prob.y[index]=yList.front(); xList.pop_front(); yList.pop_front(); index ; } //std::cout<<prob.l<<"list end\n"; svmModel=svm_train(&prob, ¶m); //std::cout<<"\n"<<"over\n"; //保存model svm_save_model("model.txt",svmModel); //释放空间 delete prob.y; delete [] prob.x; svm_free_and_destroy_model(&svmModel); } void predict(char *filePath) { svm_model *svmModel = svm_load_model("model.txt"); FILE *fp; int line=0; int temp; if((fp=fopen(filePath,"rt"))==NULL) return ; while(1) { svm_node* input = new svm_node[85 1]; for(int k=0;k<85;k ) { fscanf(fp,"%d",&temp); input[k].index = k 1; input[k].value = temp/(MAX*1.0); } input[85].index = -1; int predictValue=svm_predict(svmModel, input); predictvalue.push_back(predictValue); cout<<predictValue<<endl; if(feof(fp)) break; } } void writeValue(vector<int> &v,string filePath) { FILE *pfile=fopen("filePath","wb"); vector<int>::iterator iter=v.begin(); char *c=new char[2]; for(;iter!=v.end(); iter) { c[1]='\n'; if(*iter==0) c[0]='0'; else c[0]='1'; fwrite(c,1,2,pfile); } fclose(pfile); delete c; } bool getRealValue() { FILE *fp; int temp; if((fp=fopen("tictgts2000.txt","rt"))==NULL) return false; while(1) { fscanf(fp,"%d",&temp); realvalue.push_back(temp); if(feof(fp)) break; } return true; } double getAccuracy() { if(!getRealValue()) return 0.0; int counter=0; int counter1=0; for(int i=0;i<realvalue.size();i ) { if(realvalue.at(i)==predictvalue.at(i)) { counter ; //测试正确的个数 if(realvalue.at(i)==1) counter1 ; } } //cout<<realvalue.size()<<endl; //目标值为1的记录测试真确的个数 return counter*1.0/realvalue.size(); } int main() { clock_t t1,t2,t3; cout<<"请稍等待..."<<endl; t1=clock(); train("ticdata2000.txt"); //训练 t2=clock(); predict("ticeval2000.txt"); //预测 t3=clock(); writeValue(predictvalue,"result.txt"); //将预测值写入到文件 double accuracy=getAccuracy(); //得到正确率 cout<<"训练数据共:"<<trainNum<<"条记录"<<endl; cout<<"测试数据共:"<<realvalue.size()<<"条记录"<<endl; cout<<"训练的时间:"<<1.0*(t2-t1)/nTstTimes<<"ms"<<endl; cout<<"预测的时间:"<<1.0*(t3-t2)/nTstTimes<<"ms"<<endl; cout<<"测试正确率为:"<<accuracy*100<<"%"<<endl; system("pause"); return 0; }