基本信息
源码名称:svm分类算法示例源码(含实验报告)
源码大小:3.18M
文件格式:.zip
开发语言:C/C++
更新时间:2019-03-12
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
#include "svm.h"
#include <iostream>
#include <list>
#include <iterator>
#include <vector>
#include <string>
#include <ctime>
using namespace std;
svm_parameter param;
svm_problem prob;
svm_model *svmModel;
list<svm_node*> xList;
list<double> yList ;
const int MAX=10;
const int nTstTimes=10;
vector<int> predictvalue;
vector<int> realvalue;
int trainNum=0;
void setParam() //
{
param.svm_type = C_SVC;
param.kernel_type = RBF;
param.degree = 3;
param.gamma = 0.5;
param.coef0 = 0;
param.nu = 0.5;
param.cache_size = 40;
param.C = 500;
param.eps = 1e-3;
param.p = 0.1;
param.shrinking = 1;
// param.probability = 0;
param.nr_weight = 0;
param.weight = NULL;
param.weight_label =NULL;
}
void train(char *filePath)
{
FILE *fp;
int k;
int line=0;
int temp;
if((fp=fopen(filePath,"rt"))==NULL)
return ;
while(1)
{
svm_node* features = new svm_node[85 1];
for(k=0;k<85;k )
{
fscanf(fp,"%d",&temp);
features[k].index = k 1;
features[k].value = temp/(MAX*1.0) ;
}
features[85].index = -1;
fscanf(fp,"%d",&temp);
xList.push_back(features);
yList.push_back(temp);
line ;
trainNum=line;
if(feof(fp))
break;
}
setParam();
prob.l=line;
prob.x=new svm_node *[prob.l]; //对应的特征向量
prob.y = new double[prob.l]; //放的是值
int index=0;
while(!xList.empty())
{
prob.x[index]=xList.front();
prob.y[index]=yList.front();
xList.pop_front();
yList.pop_front();
index ;
}
//std::cout<<prob.l<<"list end\n";
svmModel=svm_train(&prob, ¶m);
//std::cout<<"\n"<<"over\n";
//保存model
svm_save_model("model.txt",svmModel);
//释放空间
delete prob.y;
delete [] prob.x;
svm_free_and_destroy_model(&svmModel);
}
void predict(char *filePath)
{
svm_model *svmModel = svm_load_model("model.txt");
FILE *fp;
int line=0;
int temp;
if((fp=fopen(filePath,"rt"))==NULL)
return ;
while(1)
{
svm_node* input = new svm_node[85 1];
for(int k=0;k<85;k )
{
fscanf(fp,"%d",&temp);
input[k].index = k 1;
input[k].value = temp/(MAX*1.0);
}
input[85].index = -1;
int predictValue=svm_predict(svmModel, input);
predictvalue.push_back(predictValue);
cout<<predictValue<<endl;
if(feof(fp))
break;
}
}
void writeValue(vector<int> &v,string filePath)
{
FILE *pfile=fopen("filePath","wb");
vector<int>::iterator iter=v.begin();
char *c=new char[2];
for(;iter!=v.end(); iter)
{
c[1]='\n';
if(*iter==0)
c[0]='0';
else
c[0]='1';
fwrite(c,1,2,pfile);
}
fclose(pfile);
delete c;
}
bool getRealValue()
{
FILE *fp;
int temp;
if((fp=fopen("tictgts2000.txt","rt"))==NULL)
return false;
while(1)
{
fscanf(fp,"%d",&temp);
realvalue.push_back(temp);
if(feof(fp))
break;
}
return true;
}
double getAccuracy()
{
if(!getRealValue())
return 0.0;
int counter=0;
int counter1=0;
for(int i=0;i<realvalue.size();i )
{
if(realvalue.at(i)==predictvalue.at(i))
{
counter ; //测试正确的个数
if(realvalue.at(i)==1)
counter1 ;
}
}
//cout<<realvalue.size()<<endl; //目标值为1的记录测试真确的个数
return counter*1.0/realvalue.size();
}
int main()
{
clock_t t1,t2,t3;
cout<<"请稍等待..."<<endl;
t1=clock();
train("ticdata2000.txt"); //训练
t2=clock();
predict("ticeval2000.txt"); //预测
t3=clock();
writeValue(predictvalue,"result.txt"); //将预测值写入到文件
double accuracy=getAccuracy(); //得到正确率
cout<<"训练数据共:"<<trainNum<<"条记录"<<endl;
cout<<"测试数据共:"<<realvalue.size()<<"条记录"<<endl;
cout<<"训练的时间:"<<1.0*(t2-t1)/nTstTimes<<"ms"<<endl;
cout<<"预测的时间:"<<1.0*(t3-t2)/nTstTimes<<"ms"<<endl;
cout<<"测试正确率为:"<<accuracy*100<<"%"<<endl;
system("pause");
return 0;
}