基本信息
源码名称:c++ 图像去雾算法 示例源码
源码大小:0.86M
文件格式:.rar
开发语言:C/C++
更新时间:2017-12-23
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
图像去雾算法,图像增强
图像去雾算法,图像增强
#include "hazeremovehandler.h"
HazeRemoveHandler::HazeRemoveHandler()
{
kernel_size_ = 15;
bright_percent_ = 0.1;
A_[0] = A_[1] = A_[2] = 0;
A_average =0;
w_ = 0.95;
r_ = 120;
eps_ = 0.001*0.001;
t0_ = 0.1;
}
// This Method is to read original image and convert it to float data type and been normilized to 0~1.
// Input : input Mat type image.
void HazeRemoveHandler::ReadOriImage(Mat img)
{
ori_image_ = Mat(img.rows,img.cols,CV_32FC3);
img.convertTo(ori_image_,CV_32FC3);
// Normilize to 0~1
ori_image_ = ori_image_/255;
}
void HazeRemoveHandler::ShowImage(int type)
{
switch (type) {
case 0:
//
// imshow function notice
// for different data types
// 1. 8-bit unsigned char : show directly
// 2. 16-bit unsigned or 32-bit integer : pixel value/256, [0,255*256] -> [0,255]
// 3. 32-bit floating-point : pixel value*255, [0,1]->[0,255]
//
imshow("Original Image",ori_image_);
break;
case 1:
imshow("Darkchannel Image",dark_channel_image_);
break;
case 2:
imshow("Transmission Map",transmission_image_);
break;
case 3:
imshow("Smoothed Transmission Map",transmission_smoothed_image_);
break;
case 4:
imshow("Haze Free Image",haze_free_image_);
break;
default:
break;
}
}
// This Method is to get the dark channel of the original image
// //J^{dark}(x)=min( min( J^c(y) ) )
// Output :
// -1: means it has not load original image, should do ReadOriImage before.
// 0: means computing dark channel succeed.
int HazeRemoveHandler::DarkChannelPrior()
{
if( (ori_image_.cols==0) || (ori_image_.rows==0))
{
return -1;
}
// Compute min value for every pixel during different three channels(R,G,B)
Mat dark_tmp = Mat::zeros(ori_image_.rows,ori_image_.cols,CV_32FC1);
int rows = dark_tmp.rows;
int cols = dark_tmp.cols;
for(int i = 0; i < rows; i )
for(int j = 0; j < cols; j )
{
dark_tmp.at<float>(i,j) = min(
min(ori_image_.at<Vec3f>(i,j)[0],ori_image_.at<Vec3f>(i,j)[1]),
min(ori_image_.at<Vec3f>(i,j)[0],ori_image_.at<Vec3f>(i,j)[2])
);
}
// Minfilter implemented by erode function
erode(dark_tmp,dark_channel_image_,Mat::ones(kernel_size_,kernel_size_,CV_32FC1));
return 0;
}
// This Method is to estimate the transmission map of the original image
// t(x) = 1- min( min( I^c(y)/A^c ) )
// Output :
// -1: means it has not load original image or estimate the Atmospheric Light
// , should do that before.
// 0: means estimate the transmission map succeed.
int HazeRemoveHandler::EstimateTransmission()
{
A_average = (A_[0] A_[1] A_[2])/3;
if(A_average>0.86)
A_average = 0.86;
if( (ori_image_.cols==0) || (ori_image_.rows==0) || (A_average ==0))
{
return -1;
}
Mat dark_tmp = Mat::zeros(ori_image_.rows,ori_image_.cols,CV_32FC1);
int rows = dark_tmp.rows;
int cols = dark_tmp.cols;
for(int i = 0; i < rows; i )
for(int j = 0; j < cols; j )
{
dark_tmp.at<float>(i,j) = min(
// min(ori_image_.at<Vec3f>(i,j)[0]/A_average,ori_image_.at<Vec3f>(i,j)[1]/A_average),
// min(ori_image_.at<Vec3f>(i,j)[0]/A_average,ori_image_.at<Vec3f>(i,j)[2]/A_average)
min(ori_image_.at<Vec3f>(i,j)[0],ori_image_.at<Vec3f>(i,j)[1]),
min(ori_image_.at<Vec3f>(i,j)[0],ori_image_.at<Vec3f>(i,j)[2])
);
}
Mat dark_hazeimage;
// Minfilter implemented by erode function
erode(dark_tmp,dark_hazeimage,Mat::ones(kernel_size_,kernel_size_,CV_32FC1));
transmission_image_ = Mat(ori_image_.rows,ori_image_.cols,CV_32FC1);
for(int i = 0; i < rows; i )
for(int j = 0; j < cols; j )
{
transmission_image_.at<float>(i,j) = 1-w_*dark_hazeimage.at<float>(i,j);
}
return 0;
}
// This Method is to estimating the Atmospheric Light of the scene
// Output :
// -1: means it has not compute dark channel image, should do DarkChannelPrior before.
// 0: means computing estimate succeed.
int HazeRemoveHandler::EstimateAtmoLight()
{
if((dark_channel_image_.cols ==0 )||(dark_channel_image_.rows==0))
{
return -1;
}
int bripix_num;
bripix_num = (int)dark_channel_image_.cols*dark_channel_image_.rows*bright_percent_/100;
// Change rows*cols data -> 1*(rows*cols) data
Mat dark_reshape = dark_channel_image_.reshape(0,1).clone();
Mat sorted;
sortIdx(dark_reshape,sorted,CV_SORT_EVERY_ROW CV_SORT_DESCENDING);
vector<int> bripixel_idx;
for(int i = 0 ; i < bripix_num; i )
{
int pixel_rows;
int pixel_cols;
if(sorted.at<int>(0,i)%dark_channel_image_.cols==0)
{
pixel_rows = (sorted.at<int>(0,i) 1)/dark_channel_image_.cols-1;
pixel_cols = (sorted.at<int>(0,i) 1)%dark_channel_image_.cols dark_channel_image_.cols;
}
else
{
pixel_rows = (sorted.at<int>(0,i) 1)/dark_channel_image_.cols;
pixel_cols = (sorted.at<int>(0,i) 1)%dark_channel_image_.cols-1;
}
A_[0] = ori_image_.at<Vec3f>(pixel_rows,pixel_cols)[0];
A_[1] = ori_image_.at<Vec3f>(pixel_rows,pixel_cols)[1];
A_[2] = ori_image_.at<Vec3f>(pixel_rows,pixel_cols)[2];
}
A_[0] /= bripix_num;
A_[1] /= bripix_num;
A_[2] /= bripix_num;
return 0;
}
// This Method uses guided image filter to smooth the transimission map(keep edge and remove noise)
// Output :
// -1: means it has not compute transimission map, should do that before.
// 0: means smooth succeed.
int HazeRemoveHandler::SmoothTransmissionMap()
{
if((transmission_image_.cols ==0) || (transmission_image_.rows==0))
{
return -1;
}
transmission_smoothed_image_ = guidedFilter(ori_image_,transmission_image_,r_,eps_);
return 0;
}
int HazeRemoveHandler::HazeFree()
{
if((transmission_smoothed_image_.cols ==0) || (transmission_smoothed_image_.rows==0))
{
return -1;
}
haze_free_image_ = Mat(ori_image_.rows,ori_image_.cols,CV_32FC3);
int rows = haze_free_image_.rows;
int cols = haze_free_image_.cols;
for(int i = 0; i < rows; i )
for(int j = 0; j < cols; j )
{
float t_max;
if(transmission_smoothed_image_.at<float>(i,j) > t0_)
t_max = transmission_smoothed_image_.at<float>(i,j);
else
t_max = t0_;
haze_free_image_.at<Vec3f>(i,j)[0] = (ori_image_.at<Vec3f>(i,j)[0]-A_average)/t_max A_average;
haze_free_image_.at<Vec3f>(i,j)[1] = (ori_image_.at<Vec3f>(i,j)[1]-A_average)/t_max A_average;
haze_free_image_.at<Vec3f>(i,j)[2] = (ori_image_.at<Vec3f>(i,j)[2]-A_average)/t_max A_average;
}
return 0;
}