基本信息
源码名称:c++ 车牌识别 实例源码下载
源码大小:2.52M
文件格式:.zip
开发语言:C/C++
更新时间:2017-06-01
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 3 元×
微信扫码支付:3 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
#include <cstdio> #include <cstring> #include <iostream> #include<cv.h> #include<highgui.h> #include <cmath> #include "image.h" using namespace std; int main(){ char imageName[12] = "1.jpg"; char imageDstName[12] = "1_dst.jpg"; char imageBwName[12] = "1_bw.jpg"; IplImage* srcImage = NULL,*image = NULL,*bwImage = NULL; cvNamedWindow("srcImage",1); cvNamedWindow("bwImage",1); //cvShowImage("srcImage",srcImage); int imageWidth,imageHeight; int maxDif = 50; //找到蓝色区域 int i= 0,j = 0; unsigned char * pPixel = NULL; unsigned char pixelR = 0,pixelG = 0,pixelB = 0; unsigned char R = 28,G = 63, B = 138; double length,area,rectArea; double rectDegree = 0.0; //矩形度 double long2Short = 1.0; //体态比 //计算边界序列的参数 长度 面积 矩形 最小矩形 //并输出每个边界的参数 CvRect rect; CvBox2D box; int imageCnt = 1; double axisLong = 0.0, axisShort = 0.0; double temp; while ((srcImage = cvLoadImage(imageName,1)) != NULL) { cvShowImage("srcImage",srcImage); cout<<imageName<<": "<<endl; imageWidth = srcImage->width; imageHeight = srcImage->height; image = cvCreateImage(cvSize(imageWidth,imageHeight),8,3); //image = cvCloneImage(srcImage); Image::cloneImage(srcImage,image); bwImage = cvCreateImage(cvGetSize(srcImage),srcImage->depth,1); //cvZero(bwImage); Image::ZerosImage(bwImage); for (i = 0; i< imageHeight;i ) { for (j = 0;j<imageWidth;j ) { pPixel = (unsigned char*)srcImage->imageData i*srcImage->widthStep j*3; pixelB = pPixel[0]; pixelG = pPixel[1]; pixelR = pPixel[2]; if (abs(pixelB - B) < maxDif && abs(pixelG - G)< maxDif && abs(pixelR - R)< maxDif) { *((unsigned char*)bwImage->imageData i*bwImage->widthStep j) = 255; }else { *((unsigned char*)bwImage->imageData i*bwImage->widthStep j) = 0; } } } cvShowImage("bwImage",bwImage); cvSaveImage(imageBwName,bwImage); //cvWaitKey(0); //膨胀 //cvDilate(bwImage,bwImage,0,3); Image::dilateImage(bwImage,bwImage); Image::dilateImage(bwImage,bwImage); Image::dilateImage(bwImage,bwImage); //cvErode (bwImage,bwImage,0,3); Image::erodeImage(bwImage,bwImage); Image::erodeImage(bwImage,bwImage); Image::erodeImage(bwImage,bwImage); cvShowImage("bwImage",bwImage); //cvWaitKey(0); //新图,将轮廓绘制到dst IplImage *dst = cvCreateImage(cvGetSize(srcImage),8,3); //dst = cvCloneImage(srcImage);//赋值为0 Image::cloneImage(srcImage,dst); //寻找轮廓 CvMemStorage *storage = cvCreateMemStorage(0); CvSeq * seq = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), storage); CvSeq * tempSeq = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), storage); int cnt = cvFindContours(bwImage,storage,&seq);//返回轮廓的数目 cout<<"number of contours "<<cnt<<endl; cvShowImage("bwImage",bwImage); //难道使用cvFindContours会改变源图像?需要实现保存一下 for (tempSeq = seq;tempSeq != NULL; tempSeq = tempSeq->h_next) { length = cvArcLength(tempSeq); area = cvContourArea(tempSeq); //筛选面积比较大的区域 if (area > 1000 && area < 50000) { //cout<<"Points: "<<tempSeq->total<<endl; //外接矩形 rect = cvBoundingRect(tempSeq,1); //绘制轮廓和外接矩形 //cvDrawContours(dst,tempSeq,CV_RGB(255,0,0),CV_RGB(255,0,0),0); //cvRectangleR(dst,rect,CV_RGB(0,255,0)); //cvShowImage("dst",dst); //绘制外接最小矩形 CvPoint2D32f pt[4]; box = cvMinAreaRect2(tempSeq,0); cvBoxPoints(box,pt); //下面开始分析图形的形状特征 //长轴 短轴 axisLong = sqrt(pow(pt[1].x -pt[0].x,2) pow(pt[1].y -pt[0].y,2)); axisShort = sqrt(pow(pt[2].x -pt[1].x,2) pow(pt[2].y -pt[1].y,2)); if (axisShort > axisLong) { temp = axisLong; axisLong = axisShort; axisShort= temp; } rectArea = axisLong*axisShort; rectDegree = area/rectArea; //体态比or长宽比 最下外接矩形的长轴和短轴的比值 long2Short = axisLong/axisShort; if (long2Short> 2.2 && long2Short < 3.8 && rectDegree > 0.63 && rectArea > 3000 && rectArea <50000) { cout<<"Length: "<<length<<endl; cout<<"Area : "<<area<<endl; cout<<"long axis :"<<axisLong<<endl; cout<<"short axis: "<<axisShort<<endl; cout<<"long2Short: "<<long2Short<<endl; cout<<"rectArea: "<<rectArea<<endl; cout<<"rectDegree: "<<rectDegree<<endl; for(int i = 0;i<4; i){ cvLine(dst,cvPointFrom32f(pt[i]),cvPointFrom32f(pt[((i 1)%4)?(i 1):0]),CV_RGB(255,0,0)); } } //cvShowImage("dst",dst); //cvWaitKey(); } } cvShowImage("dst",dst); cvSaveImage(imageDstName,dst); //cvWaitKey(0); imageCnt ; sprintf(imageName,"%d.jpg",imageCnt); sprintf(imageBwName,"%d_bw.jpg",imageCnt); sprintf(imageDstName,"%d_dst.jpg",imageCnt); cout<<"\n\n"; } return 0; }