基本信息
源码名称:c++ 车牌识别 实例源码下载
源码大小:2.52M
文件格式:.zip
开发语言:C/C++
更新时间:2017-06-01
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):78630559
本次赞助数额为: 3 元×
微信扫码支付:3 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
#include <cstdio>
#include <cstring>
#include <iostream>
#include<cv.h>
#include<highgui.h>
#include <cmath>
#include "image.h"
using namespace std;
int main(){
char imageName[12] = "1.jpg";
char imageDstName[12] = "1_dst.jpg";
char imageBwName[12] = "1_bw.jpg";
IplImage* srcImage = NULL,*image = NULL,*bwImage = NULL;
cvNamedWindow("srcImage",1);
cvNamedWindow("bwImage",1);
//cvShowImage("srcImage",srcImage);
int imageWidth,imageHeight;
int maxDif = 50;
//找到蓝色区域
int i= 0,j = 0;
unsigned char * pPixel = NULL;
unsigned char pixelR = 0,pixelG = 0,pixelB = 0;
unsigned char R = 28,G = 63, B = 138;
double length,area,rectArea;
double rectDegree = 0.0; //矩形度
double long2Short = 1.0; //体态比
//计算边界序列的参数 长度 面积 矩形 最小矩形
//并输出每个边界的参数
CvRect rect;
CvBox2D box;
int imageCnt = 1;
double axisLong = 0.0, axisShort = 0.0;
double temp;
while ((srcImage = cvLoadImage(imageName,1)) != NULL)
{
cvShowImage("srcImage",srcImage);
cout<<imageName<<": "<<endl;
imageWidth = srcImage->width;
imageHeight = srcImage->height;
image = cvCreateImage(cvSize(imageWidth,imageHeight),8,3);
//image = cvCloneImage(srcImage);
Image::cloneImage(srcImage,image);
bwImage = cvCreateImage(cvGetSize(srcImage),srcImage->depth,1);
//cvZero(bwImage);
Image::ZerosImage(bwImage);
for (i = 0; i< imageHeight;i )
{
for (j = 0;j<imageWidth;j )
{
pPixel = (unsigned char*)srcImage->imageData i*srcImage->widthStep j*3;
pixelB = pPixel[0];
pixelG = pPixel[1];
pixelR = pPixel[2];
if (abs(pixelB - B) < maxDif && abs(pixelG - G)< maxDif && abs(pixelR - R)< maxDif)
{
*((unsigned char*)bwImage->imageData i*bwImage->widthStep j) = 255;
}else {
*((unsigned char*)bwImage->imageData i*bwImage->widthStep j) = 0;
}
}
}
cvShowImage("bwImage",bwImage);
cvSaveImage(imageBwName,bwImage);
//cvWaitKey(0);
//膨胀
//cvDilate(bwImage,bwImage,0,3);
Image::dilateImage(bwImage,bwImage);
Image::dilateImage(bwImage,bwImage);
Image::dilateImage(bwImage,bwImage);
//cvErode (bwImage,bwImage,0,3);
Image::erodeImage(bwImage,bwImage);
Image::erodeImage(bwImage,bwImage);
Image::erodeImage(bwImage,bwImage);
cvShowImage("bwImage",bwImage);
//cvWaitKey(0);
//新图,将轮廓绘制到dst
IplImage *dst = cvCreateImage(cvGetSize(srcImage),8,3);
//dst = cvCloneImage(srcImage);//赋值为0
Image::cloneImage(srcImage,dst);
//寻找轮廓
CvMemStorage *storage = cvCreateMemStorage(0);
CvSeq * seq = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), storage);
CvSeq * tempSeq = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), storage);
int cnt = cvFindContours(bwImage,storage,&seq);//返回轮廓的数目
cout<<"number of contours "<<cnt<<endl;
cvShowImage("bwImage",bwImage); //难道使用cvFindContours会改变源图像?需要实现保存一下
for (tempSeq = seq;tempSeq != NULL; tempSeq = tempSeq->h_next)
{
length = cvArcLength(tempSeq);
area = cvContourArea(tempSeq);
//筛选面积比较大的区域
if (area > 1000 && area < 50000)
{
//cout<<"Points: "<<tempSeq->total<<endl;
//外接矩形
rect = cvBoundingRect(tempSeq,1);
//绘制轮廓和外接矩形
//cvDrawContours(dst,tempSeq,CV_RGB(255,0,0),CV_RGB(255,0,0),0);
//cvRectangleR(dst,rect,CV_RGB(0,255,0));
//cvShowImage("dst",dst);
//绘制外接最小矩形
CvPoint2D32f pt[4];
box = cvMinAreaRect2(tempSeq,0);
cvBoxPoints(box,pt);
//下面开始分析图形的形状特征
//长轴 短轴
axisLong = sqrt(pow(pt[1].x -pt[0].x,2) pow(pt[1].y -pt[0].y,2));
axisShort = sqrt(pow(pt[2].x -pt[1].x,2) pow(pt[2].y -pt[1].y,2));
if (axisShort > axisLong)
{
temp = axisLong;
axisLong = axisShort;
axisShort= temp;
}
rectArea = axisLong*axisShort;
rectDegree = area/rectArea;
//体态比or长宽比 最下外接矩形的长轴和短轴的比值
long2Short = axisLong/axisShort;
if (long2Short> 2.2 && long2Short < 3.8 && rectDegree > 0.63 && rectArea > 3000 && rectArea <50000)
{
cout<<"Length: "<<length<<endl;
cout<<"Area : "<<area<<endl;
cout<<"long axis :"<<axisLong<<endl;
cout<<"short axis: "<<axisShort<<endl;
cout<<"long2Short: "<<long2Short<<endl;
cout<<"rectArea: "<<rectArea<<endl;
cout<<"rectDegree: "<<rectDegree<<endl;
for(int i = 0;i<4; i){
cvLine(dst,cvPointFrom32f(pt[i]),cvPointFrom32f(pt[((i 1)%4)?(i 1):0]),CV_RGB(255,0,0));
}
}
//cvShowImage("dst",dst);
//cvWaitKey();
}
}
cvShowImage("dst",dst);
cvSaveImage(imageDstName,dst);
//cvWaitKey(0);
imageCnt ;
sprintf(imageName,"%d.jpg",imageCnt);
sprintf(imageBwName,"%d_bw.jpg",imageCnt);
sprintf(imageDstName,"%d_dst.jpg",imageCnt);
cout<<"\n\n";
}
return 0;
}