基本信息
源码名称:基于盲目搜索的宽度优先算法的八数码的解决办法
源码大小:2.19M
文件格式:.zip
开发语言:C/C++
更新时间:2016-12-12
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
// AI_Bliend_BFS.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include "list.h" #include <stdio.h> #include <stdlib.h> int NumberOfInvert(int s[]);//求逆序数 bool isAimStatus(int s1[], int s2[]);//判断是否是目标状态 void zuoyi(statusNode *node, int s[], int count, int parent, int where0);//左移 void youyi(statusNode *node, int s[], int count, int parent, int where0);//右移 void shangyi(statusNode *node, int s[], int count, int parent, int where0);//上移 void xiayi(statusNode *node, int s[], int count, int parent, int where0);//下移 void printState(int i,int start[], int j,int end[]);//打印状态节点的状态转换过程 void printList(statusNode *head);//遍历链表 void printTrace(statusNode *head, statusNode &node);//打印路径 int main() { //节点状态输入 int start[9] = { 0 }; int end[9] = { 0 }; printf("请输入初始状态:"); for (int i = 0; i < 9; i ) { scanf("%d", &start[i]); } printf("请输入目标状态:"); for (int i = 0; i < 9; i ) { scanf("%d", &end[i]); } printf("输入结束\n"); //计算初始状态和结束状态的逆序值 int sN = NumberOfInvert(start); int eN = NumberOfInvert(end); //判断是否可达 if ((sN % 2) == (eN % 2)) { printf("可达"); } else { printf("初始状态和目标状态不可达"); return 0; } //将初始节点放入open表 statusNode *open, *closed; //初始化链表头 initList(&open); initList(&closed); statusNode snode; snode.i = 1; for (int i = 0; i < 9; i ) { snode.s[i] = start[i]; } snode.wayOfBirth = 0; snode.parent = 0; snode.next = NULL; insertListHead(open, snode); if (isAimStatus(snode.s, end)) { printf("达到目标状态\n"); } else { printf("状态不相同\n"); } bool isSuccess = false;//判断是否达到目标状态 int count = 2;//生成节点的序号 while (!isEmpty(open) && !isSuccess) { statusNode *node=deleteHeadNode(open); insertListHead(closed,*node); isSuccess = isAimStatus(node->s,end); if (isSuccess) { break; } else { //扩展节点node int where0; for (int i = 0; i < 9; i ) { if (node->s[i] == 0) { where0 = i; break; } } printf("状态%d中0的位置是%d\n",node->i,where0); switch (where0) {//0表示根节点,1上移,2下移,3左移,4右移 case 0: { statusNode *n; //空格向右移(4) if (node->wayOfBirth == 3) {//判断上一步是不是左移 } else { n = (statusNode *)malloc(sizeof(statusNode)); youyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向下移(2) if (node->wayOfBirth == 1) {//判断上一步是不是上移 } else { n = (statusNode *)malloc(sizeof(statusNode)); xiayi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } break; } case 1: { statusNode *n; //空格向左移(3) if (node->wayOfBirth == 4) {//判断上一步是不是右移 } else { n = (statusNode *)malloc(sizeof(statusNode)); zuoyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i,n->s); } //空格向右移 if (node->wayOfBirth == 4) {//判断上一步是不是右移 } else { n = (statusNode *)malloc(sizeof(statusNode)); youyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向下移 if (node->wayOfBirth == 1) {//判断上一步是不是上移 } else { n = (statusNode *)malloc(sizeof(statusNode)); xiayi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } break; } case 2: { statusNode *n; //空格向左移 if (node->wayOfBirth == 4) {//判断上一步是不是右移 } else { n = (statusNode *)malloc(sizeof(statusNode)); zuoyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向下移 if (node->wayOfBirth == 1) {//判断上一步是不是上移 } else { n = (statusNode *)malloc(sizeof(statusNode)); xiayi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } break; } case 3: { statusNode *n; //空格向上移 if (node->wayOfBirth == 2) {//判断上一步是不是下移 } else { n = (statusNode *)malloc(sizeof(statusNode)); shangyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向右移 if (node->wayOfBirth == 3) {//判断上一步是不是左移 } else { n = (statusNode *)malloc(sizeof(statusNode)); youyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向下移 if (node->wayOfBirth == 1) {//判断上一步是不是上移 } else { n = (statusNode *)malloc(sizeof(statusNode)); xiayi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } break; } case 4: { statusNode *n; //空格向上移(1) if (node->wayOfBirth == 2) {//判断上一步是不是下移 } else { n = (statusNode *)malloc(sizeof(statusNode)); shangyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向下移(2) if (node->wayOfBirth == 1) {//判断上一步是不是上移 } else { n = (statusNode *)malloc(sizeof(statusNode)); xiayi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向右移(4) if (node->wayOfBirth == 3) {//判断上一步是不是左移 } else { n = (statusNode *)malloc(sizeof(statusNode)); youyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向左移(3) if (node->wayOfBirth == 4) {//判断上一步是不是右移 } else { n = (statusNode *)malloc(sizeof(statusNode)); zuoyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } break; } case 5: { statusNode *n; //空格向上移(1) if (node->wayOfBirth == 2) {//判断上一步是不是下移 } else { n = (statusNode *)malloc(sizeof(statusNode)); shangyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向下移(2) if (node->wayOfBirth == 1) {//判断上一步是不是上移 } else { n = (statusNode *)malloc(sizeof(statusNode)); xiayi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向左移(3) if (node->wayOfBirth == 4) {//判断上一步是不是右移 } else { n = (statusNode *)malloc(sizeof(statusNode)); zuoyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } break; } case 6: { statusNode *n; //空格向上移(1) if (node->wayOfBirth == 2) {//判断上一步是不是下移 } else { n = (statusNode *)malloc(sizeof(statusNode)); shangyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向右移(4) if (node->wayOfBirth == 3) {//判断上一步是不是左移 } else { n = (statusNode *)malloc(sizeof(statusNode)); youyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } break; } case 7: { statusNode *n; //空格向上移(1) if (node->wayOfBirth == 2) {//判断上一步是不是下移 } else { n = (statusNode *)malloc(sizeof(statusNode)); shangyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向右移(4) if (node->wayOfBirth == 3) {//判断上一步是不是左移 } else { n = (statusNode *)malloc(sizeof(statusNode)); youyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向左移(3) if (node->wayOfBirth == 4) {//判断上一步是不是右移 } else { n = (statusNode *)malloc(sizeof(statusNode)); zuoyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } break; } case 8: { statusNode *n; //空格向上移(1) if (node->wayOfBirth == 2) {//判断上一步是不是下移 } else { n = (statusNode *)malloc(sizeof(statusNode)); shangyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } //空格向左移(3) if (node->wayOfBirth == 4) {//判断上一步是不是右移 } else { n = (statusNode *)malloc(sizeof(statusNode)); zuoyi(n, node->s, count, node->i, where0); count ; insertListTail(open, *n); printState(node->i, node->s, n->i, n->s); } break; } } } } if (isSuccess) { printf("成功\n"); } system("pause"); return 0; } int NumberOfInvert(int s[]) { //求出数组中的逆序对的数目 int count = 0; for (int i = 0; i < 8; i ) { if (s[i] == 0) { continue; } for (int j = i 1; j < 9; j ) { if (s[j] == 0) { continue; } if (s[i] > s[j]) { count ; } } } return count; } bool isAimStatus(int s1[], int s2[]) { bool isEqual = true; for (int i = 0; i < 9; i ) { if (s1[i]!=s2[i]) { isEqual = false; return isEqual; } } return isEqual; } void zuoyi(statusNode *node,int s[],int count,int parent,int where0) { node->i = count; for (int i = 0; i < 9; i ) { node->s[i] = s[i]; } node->parent = parent; node->next = NULL; node->wayOfBirth = 3; int temp; temp = node->s[where0]; node->s[where0] = node->s[where0 - 1]; node->s[where0 - 1] = temp; } void youyi(statusNode *node, int s[], int count, int parent, int where0) { node->i = count; for (int i = 0; i < 9; i ) { node->s[i] = s[i]; } node->parent = parent; node->next = NULL; node->wayOfBirth = 4; int temp; temp = node->s[where0]; node->s[where0] = node->s[where0 1]; node->s[where0 1] = temp; } void shangyi(statusNode *node, int s[], int count, int parent, int where0) { node->i = count; for (int i = 0; i < 9; i ) { node->s[i] = s[i]; } node->parent = parent; node->next = NULL; node->wayOfBirth = 1; int temp; temp = node->s[where0]; node->s[where0] = node->s[where0 - 3]; node->s[where0 - 3] = temp; } void xiayi(statusNode *node, int s[], int count, int parent, int where0) { node->i = count; for (int i = 0; i < 9; i ) { node->s[i] = s[i]; } node->parent = parent; node->next = NULL; node->wayOfBirth = 2; int temp; temp = node->s[where0]; node->s[where0] = node->s[where0 3]; node->s[where0 3] = temp; } void printState(int i, int start[], int j, int end[]) { printf("(%d) ------------> (%d)\n", i, j); for (int k = 0; k < 9; k =3) { printf("%d%d%d %d%d%d\n", start[k], start[k 1], start[k 2], end[k], end[k 1], end[k 2]); } printf("\n"); printf("\n"); } /* 调试过程中发现的bug简记(实验报告再详细展开): 1.链表初始化问题。 2.链表的插入结点的传递问题。 3.从一个状态衍生出1-4个状态的选择问题的解决办法的思考过程。(switch case结构)。 4.序号问题的思考以及解决办法count变量的设置,和isSuccess变量出现以及放置位置的思考。 5.将stateNode放在switch前所出的问题以及解决办法。 6.每个case中的特色以及四个移位算法的想出。 7.每个case变量中if表达式里防止break所导致的问题以及解决办法。 ggs——2016/11/2 */