基本信息
源码名称:基于SVM与BoW的图片分类的OpenCV实现-svm图片分类
源码大小:0.04M
文件格式:.rar
开发语言:C/C++
更新时间:2015-12-14
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
#include <iostream> #include <fstream> #include <string> #include <map> #include <iomanip> #include <sstream> #include "ImageClassPredictor.h" #include "SVMPredictor.h" #ifdef _DEBUG #pragma comment(lib, "opencv_core245d") #pragma comment(lib, "opencv_highgui245d") #pragma comment(lib, "opencv_features2d245d") #pragma comment(lib, "opencv_ml245d") #pragma comment(lib, "opencv_nonfree245d") #pragma comment(lib, "opencv_legacy245d") #pragma comment(lib, "opencv_flann245d") #pragma comment(lib, "opencv_imgproc245d") #else #pragma comment(lib, "opencv_core245") #pragma comment(lib, "opencv_highgui245") #pragma comment(lib, "opencv_features2d245") #pragma comment(lib, "opencv_ml245") #pragma comment(lib, "opencv_nonfree245") #pragma comment(lib, "opencv_legacy245") #pragma comment(lib, "opencv_flann245") #pragma comment(lib, "opencv_imgproc245") #endif #define _LOG_RESULT_ 1 std::string image_folder_path("C:\\Users\\Hongze Zhao\\Downloads\\MLKD-Final-Project-Release\\ic-data\\extra\\"); bool ReadImageNamesAndLabels(std::vector<std::string>& image_file_names, std::vector<std::string>& image_labels, std::string list_file_name) { using namespace std; ifstream label_list_file(image_folder_path list_file_name); if (!label_list_file) return false; string fname; string label; while (!label_list_file.eof()) { label_list_file >> fname >> label; if (fname.length() == 0 || label.length() == 0) continue; image_file_names.push_back(fname); image_labels.push_back(label); } label_list_file.close(); return true; } bool ReadImageNames(std::vector<std::string>& image_file_names, std::string list_file_name) { using namespace std; ifstream label_list_file(image_folder_path list_file_name); if (!label_list_file) return false; string fname; string line; while (!label_list_file.eof()) { getline(label_list_file, line); stringstream ss(line); ss >> fname; if (fname.length() == 0) continue; image_file_names.push_back(fname); } label_list_file.close(); return true; } int main(int argc, char* argv[]) { using namespace cv; using namespace std; if (argc != 5) { std::cout << "Usage: " << argv[0] << " <vocabulary_file_name> <SVM_Classifier_file_prefix> <image folder> <image_name_list>" << endl; std::cout << " eg. " << argv[0] << "vocabulary_color_surf_2000.yml SVM_classifier_color_blur_flann_ \"C:\\images\\\" test.list" << endl; return -1; } image_folder_path = argv[3]; vector<string> image_file_names; #if _LOG_RESULT_ ReadImageNames(image_file_names, argv[4]); #else vector<string> image_labels; ReadImageNamesAndLabels(image_file_names, image_labels, argv[4]); #endif ImageClassPredictor predictor(argv[1], argv[2]); //SVMPredictor predictor("vocabulary_color_blur_500.yml", "SVM_classifier_color_blur_brute_multi.yml"); std::cout << "predicting images ... " << std::endl; map<std::string, int> correct_counts; map<std::string, int> total_counts; map<std::string, map<std::string, int>> confusion_matrix; char buff_i[4]; char buff_j[4]; for (int i = 1; i <= 10; i ) { itoa(i, buff_i, 10); for (int j = 1; j <= 10; j ) { itoa(j, buff_j, 10); confusion_matrix[buff_i][buff_j] = 0; } } #if _LOG_RESULT_ ofstream output("predict_results.txt", ios::out); #endif #pragma omp parallel for schedule(dynamic) for (int i = 0; i < image_file_names.size(); i ) { #if !(_LOG_RESULT_) string& class_label = image_labels[i]; #endif Mat image = imread(image_folder_path image_file_names[i] ".jpg"); if (image.rows == 0 || image.cols == 0) { cout << endl << image_file_names[i] << " read error!" << endl; continue; } string predict_label = predictor.PredictClass(image); #pragma omp critical { std::cout << "\b\b\b\b\b\b\b\b\b"; std::cout << setfill(' ') << setw(4) << i 1 << "/" << setw(4) << image_file_names.size(); #if _LOG_RESULT_ output << image_file_names[i] << "\t" << predict_label << endl; #else bool predict_correct = predict_label == class_label; correct_counts[class_label] = (predict_correct ? 1 : 0); total_counts[class_label] ; confusion_matrix[class_label][predict_label] ; std::cout << " correct? " << (predict_correct ? "yes" : "no") << " (" << predict_label << " - " << class_label << ")" << endl; #endif } } std::cout << endl; #if _LOG_RESULT_ output.close(); #else // print confusion matrix for (map<std::string, map<std::string, int>>::iterator real_ite = confusion_matrix.begin(); real_ite != confusion_matrix.end(); real_ite) { float class_total = (float)total_counts[real_ite->first]; for (map<std::string, int>::iterator predict_ite = real_ite->second.begin(); predict_ite != real_ite->second.end(); predict_ite) { std::cout << setw(4) << predict_ite->second / class_total * 100.0 << " "; } std::cout << endl; } // print evaluate result int total_correct = 0; for (map<std::string, int>::iterator ite = correct_counts.begin(); ite != correct_counts.end(); ite) { int class_total = total_counts[ite->first]; float percent = (float)ite->second / (float)class_total * 100.0; std::cout << "Class " << ite->first << ": " << ite->second << " / " << class_total << " (" << percent << " %)" << endl; total_correct = ite->second; } float total_percent = (float)total_correct / (float)image_file_names.size() * 100.0; std::cout << endl << "Total correct:" << total_correct << " / " << image_file_names.size() << " (" << total_percent << " %)" << endl; #endif ::system("pause"); return 0; }