基本信息
源码名称:基于emgucv人脸识别
源码大小:0.55M
文件格式:.rar
开发语言:C#
更新时间:2019-03-18
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
using System; using System.Collections.Generic; using System.Drawing; using System.Windows.Forms; using System.Speech.Synthesis; using System.Threading; using Emgu.CV; using Emgu.CV.Structure; using Emgu.CV.CvEnum; using System.IO; using Emgu.CV.UI; namespace MultiFaceRec { public partial class FrmPrincipal : Form { //Declararation of all variables, vectors and haarcascades Image<Bgr, Byte> currentFrame; Capture grabber; HaarCascade face; HaarCascade eye; MCvFont font = new MCvFont(FONT.CV_FONT_HERSHEY_TRIPLEX, 0.5d, 0.5d); Image<Gray, byte> result, TrainedFace = null; Image<Gray, byte> gray = null; List<Image<Gray, byte>> trainingImages = new List<Image<Gray, byte>>(); List<string> labels = new List<string>(); List<string> NamePersons = new List<string>(); int ContTrain, NumLabels, t; string name, namess = null, names = null; Dictionary<string, Rectangle> foundPeople = new Dictionary<string, Rectangle>(); float xfactor; float yfactor; public FrmPrincipal() { InitializeComponent(); try { //Initialize the capture device grabber = new Capture(); grabber.QueryFrame(); //Initialize the FrameGraber event Application.Idle = new EventHandler(FrameGrabber); if (grabber != null) grabber.FlipHorizontal = !grabber.FlipHorizontal; button1.Enabled = false; } catch (Exception) { MessageBox.Show("没有摄像头!"); } //Load haarcascades for face detection face = new HaarCascade("haarcascade_frontalface_default.xml"); //eye = new HaarCascade("haarcascade_eye.xml"); try { //Load of previus trainned faces and labels for each image string Labelsinfo = File.ReadAllText(Application.StartupPath "/TrainedFaces/TrainedLabels.txt"); string[] Labels = Labelsinfo.Split('%'); NumLabels = Convert.ToInt16(Labels[0]); ContTrain = NumLabels; string LoadFaces; for (int tf = 1; tf < NumLabels 1; tf ) { LoadFaces = "face" tf ".bmp"; trainingImages.Add(new Image<Gray, byte>(Application.StartupPath "/TrainedFaces/" LoadFaces)); labels.Add(Labels[tf]); } } catch (Exception e) { //MessageBox.Show(e.ToString()); MessageBox.Show("Nothing in binary database, please add at least a face", "Triained faces load", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } } private void button1_Click(object sender, EventArgs e) { try { Application.Idle = new EventHandler(FrameGrabber); button1.Enabled = false; } catch (Exception) { } } private void button3_Click(object sender, EventArgs e) { try { Application.Idle -= new EventHandler(FrameGrabber); button1.Enabled = true; } catch (Exception) { } } private void button2_Click(object sender, System.EventArgs e) { try { //Trained face counter ContTrain = ContTrain 1; //Get a gray frame from capture device gray = grabber.QueryGrayFrame().Resize(320, 240, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC); //Face Detector MCvAvgComp[][] facesDetected = gray.DetectHaarCascade( face, 1.2, 10, Emgu.CV.CvEnum.HAAR_DETECTION_TYPE.DO_CANNY_PRUNING, new Size(20, 20)); //Action for each element detected foreach (MCvAvgComp f in facesDetected[0]) { TrainedFace = currentFrame.Copy(f.rect).Convert<Gray, byte>(); break; } //resize face detected image for force to compare the same size with the //test image with cubic interpolation type method TrainedFace = result.Resize(100, 100, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC); trainingImages.Add(TrainedFace); labels.Add(textBox1.Text); //Show face added in gray scale imageBox1.Image = TrainedFace; //Write the number of triained faces in a file text for further load File.WriteAllText(Application.StartupPath "/TrainedFaces/TrainedLabels.txt", trainingImages.ToArray().Length.ToString() "%"); //Write the labels of triained faces in a file text for further load for (int i = 1; i < trainingImages.ToArray().Length 1; i ) { trainingImages.ToArray()[i - 1].Save(Application.StartupPath "/TrainedFaces/face" i ".bmp"); File.AppendAllText(Application.StartupPath "/TrainedFaces/TrainedLabels.txt", labels.ToArray()[i - 1] "%"); } MessageBox.Show(textBox1.Text "´s face detected and added :)", "Training OK", MessageBoxButtons.OK, MessageBoxIcon.Information); } catch { MessageBox.Show("Enable the face detection first", "Training Fail", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } } /// <summary> /// 人脸识别与检测 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void FrameGrabber(object sender, EventArgs e) { label3.Text = "0"; //label4.Text = ""; NamePersons.Add(""); //Get the current frame form capture device currentFrame = grabber.QueryFrame().Resize(320, 240, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC); //Convert it to Grayscale gray = currentFrame.Convert<Gray, Byte>(); //Face Detector MCvAvgComp[][] facesDetected = gray.DetectHaarCascade( face, 1.2, 10, Emgu.CV.CvEnum.HAAR_DETECTION_TYPE.DO_CANNY_PRUNING, new Size(20, 20)); foundPeople.Clear(); //Action for each element detected foreach (MCvAvgComp f in facesDetected[0]) { t = t 1; result = currentFrame.Copy(f.rect).Convert<Gray, byte>().Resize(100, 100, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC); //draw the face detected in the 0th (gray) channel with red color currentFrame.Draw(f.rect, new Bgr(Color.Red), 2); if (trainingImages.ToArray().Length != 0) { //TermCriteria for face recognition with numbers of trained images like maxIteration MCvTermCriteria termCrit = new MCvTermCriteria(ContTrain, 0.001); //Eigen face recognizer EigenObjectRecognizer recognizer = new EigenObjectRecognizer( trainingImages.ToArray(), labels.ToArray(), 5000, ref termCrit); name = recognizer.Recognize(result); foundPeople[name] = f.rect; //Draw the label for each face detected and recognized //currentFrame.Draw(name, ref font, new Point(f.rect.X - 2, f.rect.Y - 2), new Bgr(Color.LightGreen)); } NamePersons[t - 1] = name; NamePersons.Add(""); //Set the number of faces detected on the scene label3.Text = facesDetected[0].Length.ToString(); } t = 0; //Names concatenation of persons recognized for (int nnn = 0; nnn < facesDetected[0].Length; nnn ) { names = names NamePersons[nnn] ", "; } //Show the faces procesed and recognized imageBoxFrameGrabber.Image = currentFrame; label4.Text = names; namess = names; names = ""; //Clear the list(vector) of names NamePersons.Clear(); } /// <summary> /// 中文显示名字 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void imageBoxFrameGrabber_Paint(object sender, PaintEventArgs e) { Font ff = new Font("宋体", 15, FontStyle.Bold); if (foundPeople.Count > 0) { // 缩放 xfactor = (float)imageBoxFrameGrabber.Width / (float)currentFrame.Bitmap.Width; yfactor = (float)imageBoxFrameGrabber.Height / (float)currentFrame.Bitmap.Height; foreach (string n in foundPeople.Keys) { e.Graphics.DrawString( n, ff, Brushes.LightGreen, foundPeople[n].X * xfactor, foundPeople[n].Y * yfactor - 30); } } e.Graphics.DrawString( "识别人数:" label3.Text.ToString(), this.Font, Brushes.Red, 0, 0); e.Graphics.DrawString( foundPeople.Count.ToString(), this.Font, Brushes.BlanchedAlmond, 0, 20); } private Thread th; private void label4_TextChanged(object sender, EventArgs e) { th = new Thread(new ThreadStart(SpeechSound)); th.Start(); } /// <summary> /// 语音播报 /// </summary> private void SpeechSound() { if (string.IsNullOrEmpty(label4.Text)) { return; } SpeechSynthesizer sp = new SpeechSynthesizer(); if (namess == label4.Text) { Thread.Sleep(2500); if (foundPeople.Count == 1) sp.SpeakAsync(label4.Text "你好"); if (foundPeople.Count > 1) sp.SpeakAsync(label4.Text "你们好"); } namess = null; th.Abort(); } private void FrmPrincipal_FormClosing(object sender, FormClosingEventArgs e) { th.Abort(); } } }