基本信息
源码名称:c#版 文档相似度比较 TF*IDF 算法的实现
源码大小:1.63KB
文件格式:.zip
开发语言:C#
更新时间:2013-05-17
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):813200300
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
可直接拿来测试哦
可直接拿来测试哦
using System;
using System.Collections.Generic;
using System.Text;
using System.Text.RegularExpressions;
namespace Test.TFIDF
{
class IF_IDF
{
/// <summary>
/// 获取拆分后的词组以及每个词的出现次数
/// </summary>
/// <param name="text"></param>
/// <returns></returns>
public Dictionary<string, int> GetWordsFrequnce(string text)
{
Dictionary<string, int> dictionary = new Dictionary<string, int>();
Regex regex = new Regex(@"[\u4e00-\u9fa5]");//分拣出中文字符
MatchCollection results = regex.Matches(text);
int temp;
foreach (Match word in results)
{
if (dictionary.TryGetValue(word.Value, out temp))
{
temp ;
dictionary.Remove(word.Value);
dictionary.Add(word.Value, temp);
}
else
{
dictionary.Add(word.Value, 1);
}
}
return dictionary;
}
/// <summary>
/// 文档中出现次数最多的词的出现次数
/// </summary>
/// <param name="wordsfre">拆分后的词组字典</param>
/// <returns></returns>
public int MaxWordFrequence( Dictionary<string, int> wordsfre)
{
Dictionary<string, int>.ValueCollection values = wordsfre.Values;
int maxfre = 0;
foreach (int value in values)
{
if (maxfre < value)
{
maxfre = value;
}
}
return maxfre;
}
/// <summary>
/// 计算某词的IF,返回结果
/// </summary>
/// <param name="wordFre"></param>
/// <param name="maxFre"></param>
/// <returns></returns>
public double[] TF(string text)
{
Dictionary<string, int> dictionary = GetWordsFrequnce(text);
int maxFre = MaxWordFrequence(dictionary);
double[] tf = new double[dictionary.Keys.Count];
//for (int i=0; i< wordFre.Length; i )
//{
// tf[i] = wordFre[1] / maxFre;
//}
Dictionary<string,int>.ValueCollection values=dictionary.Values;
int flag = 0;
foreach(int Fre in values)
{
tf[flag] = Fre / maxFre;
flag ;
}
return tf;
}
/// <summary>
/// 计算逆向词频,返回结果
/// </summary>
/// <param name="word"></param>
/// <param name="text"></param>
/// <returns></returns>
public double[] IDF(string text,string []texts)
{
Dictionary<string, int> dictionary = GetWordsFrequnce(text);
double[] idf = new double[dictionary.Keys.Count];
//int total_file = text.Length;//文件总数
int []file_num = new int[dictionary.Keys.Count]; //含有该词组的文件数
int flag = 0;
foreach(string word in dictionary.Keys)
{
file_num[flag] = 0;
for (int j=0; j < texts.Length; j )
{
if (texts[j].Contains(word))
{
file_num[flag] ;
}
}
idf[flag] = Math.Log( texts.Length / file_num[flag],2) 1;
flag ;
}
return idf;
}
/// <summary>
/// 计算所有文档中的词组的权重
/// </summary>
/// <param name="texts"></param>
/// <returns></returns>
public double [][]TF_IDF(string []texts)
{
double[][] tf_idf=new double[texts.Length][];
for (int i=0; i< texts.Length; i )
{
double[] tf = TF(texts[i]);
double[] idf = IDF(texts[i], texts);
tf_idf[i] = new double[tf.Length];
for (int j = 0; j < tf.Length; j )
{
tf_idf[i][j] = tf[j] * idf[j];
}
}
return tf_idf;
}
/// <summary>
/// 通过传入所有文档以及要比较的两份文档的索引,计算相似度,返回结果
/// </summary>
/// <param name="i">第i份文档</param>
/// <param name="j">第j份文档</param>
/// <param name="texts"></param>
/// <returns></returns>
public double Similarity(int i, int j,string []texts)
{
double[][] tf_idf =TF_IDF( texts);
double sum=0; //两向量内积
double i_length=0; //两向量模长
double j_length = 0;
//计算内积
for (int m = 0; m < tf_idf[i-1].Length;m )
{
if (m >= tf_idf[j-1].Length)
{
break;
}
sum = tf_idf[i-1][m] * tf_idf[j-1][m];
}
//第i份文档的向量模长
for (int n = 0; n < tf_idf[i-1].Length; n )
{
i_length = tf_idf[i-1][n] * tf_idf[i-1][n];
}
i_length = Math.Sqrt(i_length);
// 第j份文档的向量模长
for (int n = 0; n < tf_idf[j-1].Length; n )
{
j_length = tf_idf[j-1][n] * tf_idf[j-1][n];
}
j_length = Math.Sqrt(j_length);
//夹角余弦值计算公式,两向量内积除以两向量的模长乘积
return sum / (i_length * j_length);
}
}
}