基本信息
源码名称:C# 协同过滤 推荐引擎 实例源码
源码大小:0.31M
文件格式:.zip
开发语言:C#
更新时间:2016-12-16
友情提示:(无需注册或充值,赞助后即可获取资源下载链接)
嘿,亲!知识可是无价之宝呢,但咱这精心整理的资料也耗费了不少心血呀。小小地破费一下,绝对物超所值哦!如有下载和支付问题,请联系我们QQ(微信同号):78630559
本次赞助数额为: 2 元×
微信扫码支付:2 元
×
请留下您的邮箱,我们将在2小时内将文件发到您的邮箱
源码介绍
using org.apache.mahout.cf.taste.impl.model;
using org.apache.mahout.cf.taste.impl.model.file;
using org.apache.mahout.cf.taste.impl.neighborhood;
using org.apache.mahout.cf.taste.impl.recommender;
using org.apache.mahout.cf.taste.impl.recommender.knn;
using org.apache.mahout.cf.taste.impl.recommender.slopeone;
using org.apache.mahout.cf.taste.impl.similarity;
using org.apache.mahout.cf.taste.model;
using org.apache.mahout.cf.taste.similarity;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ntaste.Test
{
class Program
{
static void Main(string[] args)
{
SlopeOneRecommenderTest();
Console.WriteLine();
GenericUserBasedRecommenderTest();
Console.WriteLine();
KnnItemBasedRecommenderTest();
Console.WriteLine();
GenericItemBasedRecommenderTestByTanimotoCoefficientSimilarity();
Console.ReadLine();
}
static string filePath = @"E:\WorkStudio\ntaste\ntaste.Test\datafile\item.csv";
static void SlopeOneRecommenderTest()
{
Console.WriteLine("SlopeOneRecommenderTest");
var model = new FileDataModel(filePath);
var recommender = new SlopeOneRecommender(model);
var ids = model.getUserIDs();
while (ids.MoveNext())
{
var userId = ids.Current;
var recommendedItems = recommender.recommend(userId, 5);
Console.Write("uid:" userId);
foreach (var ritem in recommendedItems)
{
Console.Write("(" ritem.getItemID() "," ritem.getValue() ")");
}
Console.WriteLine();
}
}
static void GenericUserBasedRecommenderTest()
{
Console.WriteLine("GenericUserBasedRecommenderTest");
System.Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch();
watch.Start();
var model = new FileDataModel(filePath);
var similarity = new PearsonCorrelationSimilarity(model);
var neighborhood = new NearestNUserNeighborhood(4, similarity, model);
var recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);
var iter = model.getUserIDs();
while (iter.MoveNext())
{
var userId = iter.Current;
var recommendedItems = recommender.recommend(userId, 5);
Console.Write("uid:" userId);
foreach (var ritem in recommendedItems)
{
Console.Write("(" ritem.getItemID() "," ritem.getValue() ")");
}
Console.WriteLine();
}
watch.Stop();
Console.WriteLine(watch.ElapsedMilliseconds);
}
static void KnnItemBasedRecommenderTest()
{
Console.WriteLine("KnnItemBasedRecommenderTest");
System.Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch();
watch.Start();
var model = new FileDataModel(filePath);
ItemSimilarity similarity = new LogLikelihoodSimilarity(model);
Optimizer optimizer = new ConjugateGradientOptimizer();
var recommender = new KnnItemBasedRecommender(model, similarity, optimizer, 10);
var iter = model.getUserIDs();
while (iter.MoveNext())
{
var userId = iter.Current;
var recommendedItems = recommender.recommend(userId, 5);
Console.Write("uid:" userId);
foreach (var ritem in recommendedItems)
{
Console.Write("(" ritem.getItemID() "," ritem.getValue() ")");
}
Console.WriteLine();
}
watch.Stop();
Console.WriteLine(watch.ElapsedMilliseconds);
}
static void GenericItemBasedRecommenderTestByTanimotoCoefficientSimilarity()
{
Console.WriteLine("GenericItemBasedRecommenderTestByTanimotoCoefficientSimilarity");
System.Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch();
watch.Start();
var model = new FileDataModel(filePath);
ItemSimilarity similarity = new TanimotoCoefficientSimilarity(model);
var recommender = new GenericItemBasedRecommender(model, similarity);
var iter = model.getUserIDs();
while (iter.MoveNext())
{
var userId = iter.Current;
var recommendedItems = recommender.recommend(userId, 5);
Console.Write("uid:" userId);
foreach (var ritem in recommendedItems)
{
Console.Write("(" ritem.getItemID() "," ritem.getValue() ")");
}
Console.WriteLine();
}
watch.Stop();
Console.WriteLine(watch.ElapsedMilliseconds);
}
}
}